Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361230684> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4361230684 abstract "An additive manufacturing (AM) process, like laser powder bed fusion, allows for the fabrication of objects by spreading and melting powder in layers until a freeform part shape is created. In order to improve the properties of the material involved in the AM process, it is important to predict the material characterization property as a function of the processing conditions. In thermoelectric materials, the power factor is a measure of how efficiently the material can convert heat to electricity. While earlier works have predicted the material characterization properties of different thermoelectric materials using various techniques, implementation of machine learning models to predict the power factor of bismuth telluride (Bi2Te3) during the AM process has not been explored. This is important as Bi2Te3 is a standard material for low temperature applications. Thus, we used data about manufacturing processing parameters involved and in-situ sensor monitoring data collected during AM of Bi2Te3, to train different machine learning models in order to predict its thermoelectric power factor. We implemented supervised machine learning techniques using 80% training and 20% test data and further used the permutation feature importance method to identify important processing parameters and in-situ sensor features which were best at predicting power factor of the material. Ensemble-based methods like random forest, AdaBoost classifier, and bagging classifier performed the best in predicting power factor with the highest accuracy of 90% achieved by the bagging classifier model. Additionally, we found the top 15 processing parameters and in-situ sensor features to characterize the material manufacturing property like power factor. These features could further be optimized to maximize power factor of the thermoelectric material and improve the quality of the products built using this material." @default.
- W4361230684 created "2023-03-31" @default.
- W4361230684 creator A5024647585 @default.
- W4361230684 creator A5060005980 @default.
- W4361230684 creator A5078270323 @default.
- W4361230684 creator A5078724485 @default.
- W4361230684 creator A5084532918 @default.
- W4361230684 creator A5085421458 @default.
- W4361230684 date "2023-03-27" @default.
- W4361230684 modified "2023-10-18" @default.
- W4361230684 title "Predicting Thermoelectric Power Factor of Bismuth Telluride During Laser Powder Bed Fusion Additive Manufacturing" @default.
- W4361230684 doi "https://doi.org/10.48550/arxiv.2303.15663" @default.
- W4361230684 hasPublicationYear "2023" @default.
- W4361230684 type Work @default.
- W4361230684 citedByCount "0" @default.
- W4361230684 crossrefType "posted-content" @default.
- W4361230684 hasAuthorship W4361230684A5024647585 @default.
- W4361230684 hasAuthorship W4361230684A5060005980 @default.
- W4361230684 hasAuthorship W4361230684A5078270323 @default.
- W4361230684 hasAuthorship W4361230684A5078724485 @default.
- W4361230684 hasAuthorship W4361230684A5084532918 @default.
- W4361230684 hasAuthorship W4361230684A5085421458 @default.
- W4361230684 hasBestOaLocation W43612306841 @default.
- W4361230684 hasConcept C11413529 @default.
- W4361230684 hasConcept C117127486 @default.
- W4361230684 hasConcept C119857082 @default.
- W4361230684 hasConcept C120665830 @default.
- W4361230684 hasConcept C121332964 @default.
- W4361230684 hasConcept C127413603 @default.
- W4361230684 hasConcept C154945302 @default.
- W4361230684 hasConcept C159985019 @default.
- W4361230684 hasConcept C192562407 @default.
- W4361230684 hasConcept C200649887 @default.
- W4361230684 hasConcept C207365445 @default.
- W4361230684 hasConcept C21880701 @default.
- W4361230684 hasConcept C2777038907 @default.
- W4361230684 hasConcept C41008148 @default.
- W4361230684 hasConcept C520434653 @default.
- W4361230684 hasConcept C63024428 @default.
- W4361230684 hasConcept C97346530 @default.
- W4361230684 hasConcept C97355855 @default.
- W4361230684 hasConceptScore W4361230684C11413529 @default.
- W4361230684 hasConceptScore W4361230684C117127486 @default.
- W4361230684 hasConceptScore W4361230684C119857082 @default.
- W4361230684 hasConceptScore W4361230684C120665830 @default.
- W4361230684 hasConceptScore W4361230684C121332964 @default.
- W4361230684 hasConceptScore W4361230684C127413603 @default.
- W4361230684 hasConceptScore W4361230684C154945302 @default.
- W4361230684 hasConceptScore W4361230684C159985019 @default.
- W4361230684 hasConceptScore W4361230684C192562407 @default.
- W4361230684 hasConceptScore W4361230684C200649887 @default.
- W4361230684 hasConceptScore W4361230684C207365445 @default.
- W4361230684 hasConceptScore W4361230684C21880701 @default.
- W4361230684 hasConceptScore W4361230684C2777038907 @default.
- W4361230684 hasConceptScore W4361230684C41008148 @default.
- W4361230684 hasConceptScore W4361230684C520434653 @default.
- W4361230684 hasConceptScore W4361230684C63024428 @default.
- W4361230684 hasConceptScore W4361230684C97346530 @default.
- W4361230684 hasConceptScore W4361230684C97355855 @default.
- W4361230684 hasLocation W43612306841 @default.
- W4361230684 hasOpenAccess W4361230684 @default.
- W4361230684 hasPrimaryLocation W43612306841 @default.
- W4361230684 hasRelatedWork W2807004208 @default.
- W4361230684 hasRelatedWork W2941751521 @default.
- W4361230684 hasRelatedWork W2976388854 @default.
- W4361230684 hasRelatedWork W3087724733 @default.
- W4361230684 hasRelatedWork W3118231564 @default.
- W4361230684 hasRelatedWork W3126129616 @default.
- W4361230684 hasRelatedWork W4200487314 @default.
- W4361230684 hasRelatedWork W4200527987 @default.
- W4361230684 hasRelatedWork W4225663418 @default.
- W4361230684 hasRelatedWork W4319020025 @default.
- W4361230684 isParatext "false" @default.
- W4361230684 isRetracted "false" @default.
- W4361230684 workType "article" @default.