Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361275178> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4361275178 abstract "The gross domestic product and the per capita income are leading indicators regarding the income and the wealth of nations. The gross domestic product and the per capita income can be modelled dependent on various econometric data such as the export revenue, tourism revenue, trade deficit and the industrial revenue. In this work, an alternative and novel method is presented for the modelling of the gross domestic product and the per capita income. In this study, the gross domestic product and the per capita income are modelled autoregressively employing deep learning networks namely autoregressive deep learning networks. The input data of the developed deep learning networks are taken as the past values of the modelled variable making the deep learning networks effectively autoregressive models. As application examples of the autoregressive deep learning models, the gross domestic product and the per capita income data of Türkiye for the period of 1960-2021 are separately modelled. The autoregressive deep learning networks are developed in Python programming language. The coefficient of determination (R2), mean absolute error (MAE), mean absolute percentage error (MAPE) and the root mean square error (RMSE) of the developed models are also computed. The plots of the results of the developed autoregressive deep learning models and the performance metrics of the models show that the developed autoregressive deep learning models can be utilized to accurately model the gross domestic product and the per capita income." @default.
- W4361275178 created "2023-03-31" @default.
- W4361275178 creator A5015388039 @default.
- W4361275178 date "2023-03-30" @default.
- W4361275178 modified "2023-09-30" @default.
- W4361275178 title "Modelling the Gross Domestic Product and the Per Capita Income of Türkiye using Autoregressive Deep Learning Networks" @default.
- W4361275178 doi "https://doi.org/10.47191/ijsshr/v6-i3-59" @default.
- W4361275178 hasPublicationYear "2023" @default.
- W4361275178 type Work @default.
- W4361275178 citedByCount "0" @default.
- W4361275178 crossrefType "journal-article" @default.
- W4361275178 hasAuthorship W4361275178A5015388039 @default.
- W4361275178 hasBestOaLocation W43612751781 @default.
- W4361275178 hasConcept C100001284 @default.
- W4361275178 hasConcept C105795698 @default.
- W4361275178 hasConcept C110246401 @default.
- W4361275178 hasConcept C114350782 @default.
- W4361275178 hasConcept C121955636 @default.
- W4361275178 hasConcept C127598652 @default.
- W4361275178 hasConcept C144024400 @default.
- W4361275178 hasConcept C149782125 @default.
- W4361275178 hasConcept C149923435 @default.
- W4361275178 hasConcept C159877910 @default.
- W4361275178 hasConcept C160443848 @default.
- W4361275178 hasConcept C162324750 @default.
- W4361275178 hasConcept C172008318 @default.
- W4361275178 hasConcept C180075932 @default.
- W4361275178 hasConcept C195487862 @default.
- W4361275178 hasConcept C2908647359 @default.
- W4361275178 hasConcept C33923547 @default.
- W4361275178 hasConcept C50522688 @default.
- W4361275178 hasConcept C551662922 @default.
- W4361275178 hasConcept C72313537 @default.
- W4361275178 hasConcept C74939039 @default.
- W4361275178 hasConceptScore W4361275178C100001284 @default.
- W4361275178 hasConceptScore W4361275178C105795698 @default.
- W4361275178 hasConceptScore W4361275178C110246401 @default.
- W4361275178 hasConceptScore W4361275178C114350782 @default.
- W4361275178 hasConceptScore W4361275178C121955636 @default.
- W4361275178 hasConceptScore W4361275178C127598652 @default.
- W4361275178 hasConceptScore W4361275178C144024400 @default.
- W4361275178 hasConceptScore W4361275178C149782125 @default.
- W4361275178 hasConceptScore W4361275178C149923435 @default.
- W4361275178 hasConceptScore W4361275178C159877910 @default.
- W4361275178 hasConceptScore W4361275178C160443848 @default.
- W4361275178 hasConceptScore W4361275178C162324750 @default.
- W4361275178 hasConceptScore W4361275178C172008318 @default.
- W4361275178 hasConceptScore W4361275178C180075932 @default.
- W4361275178 hasConceptScore W4361275178C195487862 @default.
- W4361275178 hasConceptScore W4361275178C2908647359 @default.
- W4361275178 hasConceptScore W4361275178C33923547 @default.
- W4361275178 hasConceptScore W4361275178C50522688 @default.
- W4361275178 hasConceptScore W4361275178C551662922 @default.
- W4361275178 hasConceptScore W4361275178C72313537 @default.
- W4361275178 hasConceptScore W4361275178C74939039 @default.
- W4361275178 hasIssue "03" @default.
- W4361275178 hasLocation W43612751781 @default.
- W4361275178 hasLocation W43612751782 @default.
- W4361275178 hasOpenAccess W4361275178 @default.
- W4361275178 hasPrimaryLocation W43612751781 @default.
- W4361275178 hasRelatedWork W2185545036 @default.
- W4361275178 hasRelatedWork W2275621815 @default.
- W4361275178 hasRelatedWork W2303185486 @default.
- W4361275178 hasRelatedWork W2335321883 @default.
- W4361275178 hasRelatedWork W2352182191 @default.
- W4361275178 hasRelatedWork W2504402329 @default.
- W4361275178 hasRelatedWork W2566195421 @default.
- W4361275178 hasRelatedWork W4213250572 @default.
- W4361275178 hasRelatedWork W4253642679 @default.
- W4361275178 hasRelatedWork W179831738 @default.
- W4361275178 hasVolume "06" @default.
- W4361275178 isParatext "false" @default.
- W4361275178 isRetracted "false" @default.
- W4361275178 workType "article" @default.