Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361275309> ?p ?o ?g. }
- W4361275309 endingPage "5939" @default.
- W4361275309 startingPage "5939" @default.
- W4361275309 abstract "Traffic accidents have become severe risks as they are one of the causes of enormous deaths worldwide. Reducing the number of incidents is critical to saving lives and achieving sustainable cities and communities. Machine learning and data analysis techniques interpret the reasons for car accidents and propose solutions to minimize them. However, this needs to take the benefits of big data solutions as the size and velocity of traffic accident data are increasingly large and rapid. This paper explores road car accident data patterns and proposes a predictive model by investigating meaningful data features, such as accident severity, the number of casualties, and the number of vehicles. Therefore, a pre-processing model is designed to convert raw data using missing and meaningless feature removal, data attribute generalization, and outlier removal using interquartile. Four classification methods, including decision trees, random forest, multinomial logistic regression, and naïve Bayes, are used and evaluated to study the performance of road accident prediction. The results address acceptable levels of accuracy for car accident prediction except for naïve Bayes. The findings are discussed through a data-driven approach to understand the factors influencing road car accidents and highlight the key ones to propose accident prevention solutions. Finally, some strategies are provided to achieve healthy and community-friendly cities." @default.
- W4361275309 created "2023-03-31" @default.
- W4361275309 creator A5002699624 @default.
- W4361275309 creator A5005646639 @default.
- W4361275309 creator A5023665947 @default.
- W4361275309 creator A5026023968 @default.
- W4361275309 creator A5061891620 @default.
- W4361275309 creator A5085513692 @default.
- W4361275309 creator A5085760626 @default.
- W4361275309 date "2023-03-29" @default.
- W4361275309 modified "2023-09-25" @default.
- W4361275309 title "Road Car Accident Prediction Using a Machine-Learning-Enabled Data Analysis" @default.
- W4361275309 cites W2017191116 @default.
- W4361275309 cites W2025401241 @default.
- W4361275309 cites W2621409665 @default.
- W4361275309 cites W2622838661 @default.
- W4361275309 cites W2744191130 @default.
- W4361275309 cites W2752379581 @default.
- W4361275309 cites W2782006619 @default.
- W4361275309 cites W2783345824 @default.
- W4361275309 cites W2790197682 @default.
- W4361275309 cites W2794605463 @default.
- W4361275309 cites W2798658089 @default.
- W4361275309 cites W2807258775 @default.
- W4361275309 cites W2807585131 @default.
- W4361275309 cites W2889732301 @default.
- W4361275309 cites W2907070770 @default.
- W4361275309 cites W2920619141 @default.
- W4361275309 cites W2924963587 @default.
- W4361275309 cites W2945388018 @default.
- W4361275309 cites W2973700402 @default.
- W4361275309 cites W2991074212 @default.
- W4361275309 cites W3010061855 @default.
- W4361275309 cites W3010406054 @default.
- W4361275309 cites W3015255253 @default.
- W4361275309 cites W3018941314 @default.
- W4361275309 cites W3023396981 @default.
- W4361275309 cites W3093770976 @default.
- W4361275309 cites W3129499366 @default.
- W4361275309 cites W4224112146 @default.
- W4361275309 doi "https://doi.org/10.3390/su15075939" @default.
- W4361275309 hasPublicationYear "2023" @default.
- W4361275309 type Work @default.
- W4361275309 citedByCount "0" @default.
- W4361275309 crossrefType "journal-article" @default.
- W4361275309 hasAuthorship W4361275309A5002699624 @default.
- W4361275309 hasAuthorship W4361275309A5005646639 @default.
- W4361275309 hasAuthorship W4361275309A5023665947 @default.
- W4361275309 hasAuthorship W4361275309A5026023968 @default.
- W4361275309 hasAuthorship W4361275309A5061891620 @default.
- W4361275309 hasAuthorship W4361275309A5085513692 @default.
- W4361275309 hasAuthorship W4361275309A5085760626 @default.
- W4361275309 hasBestOaLocation W43612753091 @default.
- W4361275309 hasConcept C107673813 @default.
- W4361275309 hasConcept C111472728 @default.
- W4361275309 hasConcept C117568660 @default.
- W4361275309 hasConcept C119857082 @default.
- W4361275309 hasConcept C12267149 @default.
- W4361275309 hasConcept C124101348 @default.
- W4361275309 hasConcept C132964779 @default.
- W4361275309 hasConcept C138885662 @default.
- W4361275309 hasConcept C154945302 @default.
- W4361275309 hasConcept C169258074 @default.
- W4361275309 hasConcept C199360897 @default.
- W4361275309 hasConcept C207201462 @default.
- W4361275309 hasConcept C2780289543 @default.
- W4361275309 hasConcept C41008148 @default.
- W4361275309 hasConcept C52001869 @default.
- W4361275309 hasConcept C79337645 @default.
- W4361275309 hasConceptScore W4361275309C107673813 @default.
- W4361275309 hasConceptScore W4361275309C111472728 @default.
- W4361275309 hasConceptScore W4361275309C117568660 @default.
- W4361275309 hasConceptScore W4361275309C119857082 @default.
- W4361275309 hasConceptScore W4361275309C12267149 @default.
- W4361275309 hasConceptScore W4361275309C124101348 @default.
- W4361275309 hasConceptScore W4361275309C132964779 @default.
- W4361275309 hasConceptScore W4361275309C138885662 @default.
- W4361275309 hasConceptScore W4361275309C154945302 @default.
- W4361275309 hasConceptScore W4361275309C169258074 @default.
- W4361275309 hasConceptScore W4361275309C199360897 @default.
- W4361275309 hasConceptScore W4361275309C207201462 @default.
- W4361275309 hasConceptScore W4361275309C2780289543 @default.
- W4361275309 hasConceptScore W4361275309C41008148 @default.
- W4361275309 hasConceptScore W4361275309C52001869 @default.
- W4361275309 hasConceptScore W4361275309C79337645 @default.
- W4361275309 hasFunder F4320321001 @default.
- W4361275309 hasIssue "7" @default.
- W4361275309 hasLocation W43612753091 @default.
- W4361275309 hasLocation W43612753092 @default.
- W4361275309 hasOpenAccess W4361275309 @default.
- W4361275309 hasPrimaryLocation W43612753091 @default.
- W4361275309 hasRelatedWork W2046384965 @default.
- W4361275309 hasRelatedWork W2955141036 @default.
- W4361275309 hasRelatedWork W3107218657 @default.
- W4361275309 hasRelatedWork W3120061800 @default.
- W4361275309 hasRelatedWork W3165750620 @default.
- W4361275309 hasRelatedWork W4223564025 @default.
- W4361275309 hasRelatedWork W4292865745 @default.