Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361275400> ?p ?o ?g. }
- W4361275400 endingPage "5930" @default.
- W4361275400 startingPage "5930" @default.
- W4361275400 abstract "This paper presents a comprehensive study of Convolutional Neural Networks (CNN) and transfer learning in the context of medical imaging. Medical imaging plays a critical role in the diagnosis and treatment of diseases, and CNN-based models have demonstrated significant improvements in image analysis and classification tasks. Transfer learning, which involves reusing pre-trained CNN models, has also shown promise in addressing challenges related to small datasets and limited computational resources. This paper reviews the advantages of CNN and transfer learning in medical imaging, including improved accuracy, reduced time and resource requirements, and the ability to address class imbalances. It also discusses challenges, such as the need for large and diverse datasets, and the limited interpretability of deep learning models. What factors contribute to the success of these networks? How are they fashioned, exactly? What motivated them to build the structures that they did? Finally, the paper presents current and future research directions and opportunities, including the development of specialized architectures and the exploration of new modalities and applications for medical imaging using CNN and transfer learning techniques. Overall, the paper highlights the significant potential of CNN and transfer learning in the field of medical imaging, while also acknowledging the need for continued research and development to overcome existing challenges and limitations." @default.
- W4361275400 created "2023-03-31" @default.
- W4361275400 creator A5005859792 @default.
- W4361275400 creator A5006008961 @default.
- W4361275400 creator A5010602257 @default.
- W4361275400 creator A5037044938 @default.
- W4361275400 creator A5039563871 @default.
- W4361275400 creator A5049694218 @default.
- W4361275400 creator A5075873400 @default.
- W4361275400 creator A5077386816 @default.
- W4361275400 date "2023-03-29" @default.
- W4361275400 modified "2023-10-15" @default.
- W4361275400 title "A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope" @default.
- W4361275400 cites W1936750108 @default.
- W4361275400 cites W1963492712 @default.
- W4361275400 cites W2044097773 @default.
- W4361275400 cites W2083380015 @default.
- W4361275400 cites W2108598243 @default.
- W4361275400 cites W2112796928 @default.
- W4361275400 cites W2117539524 @default.
- W4361275400 cites W2117731089 @default.
- W4361275400 cites W2183341477 @default.
- W4361275400 cites W2194775991 @default.
- W4361275400 cites W2294650517 @default.
- W4361275400 cites W2548377017 @default.
- W4361275400 cites W2617669016 @default.
- W4361275400 cites W2618530766 @default.
- W4361275400 cites W2771498160 @default.
- W4361275400 cites W2772246530 @default.
- W4361275400 cites W2907148404 @default.
- W4361275400 cites W2920827296 @default.
- W4361275400 cites W2947179935 @default.
- W4361275400 cites W2948732750 @default.
- W4361275400 cites W2954996726 @default.
- W4361275400 cites W2959400106 @default.
- W4361275400 cites W2973268792 @default.
- W4361275400 cites W2989278094 @default.
- W4361275400 cites W2997422821 @default.
- W4361275400 cites W3007943565 @default.
- W4361275400 cites W3010398094 @default.
- W4361275400 cites W3015538848 @default.
- W4361275400 cites W3024956434 @default.
- W4361275400 cites W3034347188 @default.
- W4361275400 cites W3046220160 @default.
- W4361275400 cites W3049131298 @default.
- W4361275400 cites W3083622693 @default.
- W4361275400 cites W3086249470 @default.
- W4361275400 cites W3107335993 @default.
- W4361275400 cites W3134475970 @default.
- W4361275400 cites W3140854437 @default.
- W4361275400 cites W3150382221 @default.
- W4361275400 cites W3160132771 @default.
- W4361275400 cites W3163405749 @default.
- W4361275400 cites W3179841826 @default.
- W4361275400 cites W3180420485 @default.
- W4361275400 cites W3181227444 @default.
- W4361275400 cites W3197217317 @default.
- W4361275400 cites W3205409863 @default.
- W4361275400 cites W3206824631 @default.
- W4361275400 cites W3208429482 @default.
- W4361275400 cites W4200499371 @default.
- W4361275400 cites W4205415902 @default.
- W4361275400 cites W4220879402 @default.
- W4361275400 cites W4224281602 @default.
- W4361275400 cites W4225406569 @default.
- W4361275400 cites W4229451007 @default.
- W4361275400 cites W4283260735 @default.
- W4361275400 cites W4286423775 @default.
- W4361275400 cites W4289277579 @default.
- W4361275400 cites W4295517687 @default.
- W4361275400 cites W4307571500 @default.
- W4361275400 cites W4312658277 @default.
- W4361275400 doi "https://doi.org/10.3390/su15075930" @default.
- W4361275400 hasPublicationYear "2023" @default.
- W4361275400 type Work @default.
- W4361275400 citedByCount "8" @default.
- W4361275400 countsByYear W43612754002023 @default.
- W4361275400 crossrefType "journal-article" @default.
- W4361275400 hasAuthorship W4361275400A5005859792 @default.
- W4361275400 hasAuthorship W4361275400A5006008961 @default.
- W4361275400 hasAuthorship W4361275400A5010602257 @default.
- W4361275400 hasAuthorship W4361275400A5037044938 @default.
- W4361275400 hasAuthorship W4361275400A5039563871 @default.
- W4361275400 hasAuthorship W4361275400A5049694218 @default.
- W4361275400 hasAuthorship W4361275400A5075873400 @default.
- W4361275400 hasAuthorship W4361275400A5077386816 @default.
- W4361275400 hasBestOaLocation W43612754001 @default.
- W4361275400 hasConcept C108583219 @default.
- W4361275400 hasConcept C119857082 @default.
- W4361275400 hasConcept C150899416 @default.
- W4361275400 hasConcept C151730666 @default.
- W4361275400 hasConcept C154945302 @default.
- W4361275400 hasConcept C199360897 @default.
- W4361275400 hasConcept C2522767166 @default.
- W4361275400 hasConcept C2778012447 @default.
- W4361275400 hasConcept C2779343474 @default.
- W4361275400 hasConcept C2781067378 @default.
- W4361275400 hasConcept C31601959 @default.