Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361279260> ?p ?o ?g. }
- W4361279260 endingPage "1895" @default.
- W4361279260 startingPage "1865" @default.
- W4361279260 abstract "Completely automated public turing test to tell computers and humans apart (CAPTCHA) is widely used to prevent malicious automated attacks on various online services. Text- and image-CAPTCHAs have shown broader acceptability due to usability and security factors. However, recent progress in deep learning implies that text-CAPTCHAs can easily be exposed to various fraudulent attacks. Thus, image-CAPTCHAs are getting research attention to enhance usability and security. In this work, the neural-style transfer (NST) is adapted for designing an image-CAPTCHA algorithm to enhance security while maintaining human performance. In NST-rendered image-CAPTCHAs, existing methods inquire a user to identify or localize the salient object (e.g., content) which is solvable effortlessly by off-the-shelf intelligent tools. Contrarily, we propose a Style Matching CAPTCHA (SMC) that asks a user to select the style image which is applied in the NST method. A user can solve a random SMC challenge by understanding the semantic correlation between the content and style output as a cue. The performance in solving SMC is evaluated based on the 1368 responses collected from 152 participants through a web-application. The average solving accuracy in three sessions is 95.61%; and the average response time for each challenge per user is 6.52 s, respectively. Likewise, a Smartphone Application (SMC-App) is devised using the proposed method. The average solving accuracy through SMC-App is 96.33%, and the average solving time is 5.13 s. To evaluate the vulnerability of SMC, deep learning-based attack schemes using Convolutional Neural Networks (CNN), such as ResNet-50 and Inception-v3 are simulated. The average accuracy of attacks considering various studies on SMC using ResNet-50 and Inception-v3 is 37%, which is improved over existing methods. Moreover, in-depth security analysis, experimental insights, and comparative studies imply the suitability of the proposed SMC." @default.
- W4361279260 created "2023-03-31" @default.
- W4361279260 creator A5024370599 @default.
- W4361279260 creator A5052380142 @default.
- W4361279260 creator A5075849780 @default.
- W4361279260 creator A5090538308 @default.
- W4361279260 date "2023-03-30" @default.
- W4361279260 modified "2023-10-16" @default.
- W4361279260 title "Style matching CAPTCHA: match neural transferred styles to thwart intelligent attacks" @default.
- W4361279260 cites W1513685418 @default.
- W4361279260 cites W1969670714 @default.
- W4361279260 cites W1999034556 @default.
- W4361279260 cites W2003735219 @default.
- W4361279260 cites W2022710553 @default.
- W4361279260 cites W2033148163 @default.
- W4361279260 cites W2060853104 @default.
- W4361279260 cites W2089540749 @default.
- W4361279260 cites W2099256741 @default.
- W4361279260 cites W2112843719 @default.
- W4361279260 cites W2117539524 @default.
- W4361279260 cites W2120308327 @default.
- W4361279260 cites W2125561172 @default.
- W4361279260 cites W2131572598 @default.
- W4361279260 cites W2133665775 @default.
- W4361279260 cites W2183341477 @default.
- W4361279260 cites W2194775991 @default.
- W4361279260 cites W2331128040 @default.
- W4361279260 cites W2380581874 @default.
- W4361279260 cites W2475287302 @default.
- W4361279260 cites W2508457857 @default.
- W4361279260 cites W2528578439 @default.
- W4361279260 cites W2581421091 @default.
- W4361279260 cites W2587728407 @default.
- W4361279260 cites W2693668331 @default.
- W4361279260 cites W2736213052 @default.
- W4361279260 cites W2773076172 @default.
- W4361279260 cites W2791445945 @default.
- W4361279260 cites W2793833596 @default.
- W4361279260 cites W2794632300 @default.
- W4361279260 cites W2799436792 @default.
- W4361279260 cites W2924825188 @default.
- W4361279260 cites W2949290208 @default.
- W4361279260 cites W2954541259 @default.
- W4361279260 cites W2958415890 @default.
- W4361279260 cites W2962750014 @default.
- W4361279260 cites W2962858109 @default.
- W4361279260 cites W2979639830 @default.
- W4361279260 cites W2991591138 @default.
- W4361279260 cites W3004466048 @default.
- W4361279260 cites W3010629719 @default.
- W4361279260 cites W3013161732 @default.
- W4361279260 cites W3024765087 @default.
- W4361279260 cites W3035303777 @default.
- W4361279260 cites W3093822916 @default.
- W4361279260 cites W3102542372 @default.
- W4361279260 cites W3110554871 @default.
- W4361279260 cites W3111135321 @default.
- W4361279260 cites W3111771607 @default.
- W4361279260 cites W3118541825 @default.
- W4361279260 cites W3128591383 @default.
- W4361279260 cites W3154383823 @default.
- W4361279260 cites W3164893804 @default.
- W4361279260 cites W3171223431 @default.
- W4361279260 cites W3174224741 @default.
- W4361279260 cites W3174537181 @default.
- W4361279260 cites W3180968616 @default.
- W4361279260 cites W3201184102 @default.
- W4361279260 cites W3207948098 @default.
- W4361279260 cites W4206372240 @default.
- W4361279260 cites W4206469693 @default.
- W4361279260 cites W4220920624 @default.
- W4361279260 cites W4225278405 @default.
- W4361279260 cites W4226321745 @default.
- W4361279260 cites W4231610351 @default.
- W4361279260 cites W4244463960 @default.
- W4361279260 cites W4247926864 @default.
- W4361279260 cites W4253294641 @default.
- W4361279260 cites W4288247676 @default.
- W4361279260 cites W4293868210 @default.
- W4361279260 cites W4307687798 @default.
- W4361279260 cites W4309919423 @default.
- W4361279260 cites W4313644222 @default.
- W4361279260 cites W4315778445 @default.
- W4361279260 cites W4317934690 @default.
- W4361279260 cites W4318039079 @default.
- W4361279260 cites W4319300559 @default.
- W4361279260 cites W4320008745 @default.
- W4361279260 cites W4321488789 @default.
- W4361279260 doi "https://doi.org/10.1007/s00530-023-01075-0" @default.
- W4361279260 hasPublicationYear "2023" @default.
- W4361279260 type Work @default.
- W4361279260 citedByCount "0" @default.
- W4361279260 crossrefType "journal-article" @default.
- W4361279260 hasAuthorship W4361279260A5024370599 @default.
- W4361279260 hasAuthorship W4361279260A5052380142 @default.
- W4361279260 hasAuthorship W4361279260A5075849780 @default.
- W4361279260 hasAuthorship W4361279260A5090538308 @default.
- W4361279260 hasBestOaLocation W43612792602 @default.