Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361279752> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4361279752 abstract "Abstract The risks of post trauma complications are regulated by the injury, comorbidities, and the clinical trajectories, yet prediction models are often limited to single time-point data. We hypothesize that deep learning prediction models can be used for risk prediction using additive data after trauma using a sliding windows approach. Using the American College of Surgeons Trauma Quality Improvement Program (ACS TQIP) database, we developed three deep neural network models, for sliding-windows risk prediction. Output variables included early- and late mortality and any of 17 complications. As patients moved through the treatment trajectories, performance metrics increased. Models predicted early- and late mortality with ROC AUCs ranging from 0.980 to 0.994 and 0.910 to 0.972, respectively. For the remaining 17 complications, the mean performance ranged from 0.829 to 0.912. In summary, the deep neural networks achieved excellent performance in the sliding windows risk stratification of trauma patients." @default.
- W4361279752 created "2023-03-31" @default.
- W4361279752 creator A5007884543 @default.
- W4361279752 creator A5026018382 @default.
- W4361279752 creator A5035280651 @default.
- W4361279752 creator A5086744287 @default.
- W4361279752 date "2023-03-30" @default.
- W4361279752 modified "2023-10-14" @default.
- W4361279752 title "Assessing the utility of a sliding-windows deep neural network approach for risk prediction of trauma patients" @default.
- W4361279752 cites W2048301249 @default.
- W4361279752 cites W2056208640 @default.
- W4361279752 cites W2071996924 @default.
- W4361279752 cites W2120016967 @default.
- W4361279752 cites W2157825442 @default.
- W4361279752 cites W2168630917 @default.
- W4361279752 cites W2404901863 @default.
- W4361279752 cites W2481781343 @default.
- W4361279752 cites W2888528836 @default.
- W4361279752 cites W2892741787 @default.
- W4361279752 cites W2939516305 @default.
- W4361279752 cites W2966167372 @default.
- W4361279752 cites W2991225622 @default.
- W4361279752 cites W3006436762 @default.
- W4361279752 cites W3090084414 @default.
- W4361279752 cites W3098949126 @default.
- W4361279752 cites W3139226530 @default.
- W4361279752 cites W3146534296 @default.
- W4361279752 cites W3176877408 @default.
- W4361279752 cites W4293108385 @default.
- W4361279752 doi "https://doi.org/10.1038/s41598-023-32453-3" @default.
- W4361279752 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36997598" @default.
- W4361279752 hasPublicationYear "2023" @default.
- W4361279752 type Work @default.
- W4361279752 citedByCount "0" @default.
- W4361279752 crossrefType "journal-article" @default.
- W4361279752 hasAuthorship W4361279752A5007884543 @default.
- W4361279752 hasAuthorship W4361279752A5026018382 @default.
- W4361279752 hasAuthorship W4361279752A5035280651 @default.
- W4361279752 hasAuthorship W4361279752A5086744287 @default.
- W4361279752 hasBestOaLocation W43612797521 @default.
- W4361279752 hasConcept C108583219 @default.
- W4361279752 hasConcept C119857082 @default.
- W4361279752 hasConcept C126322002 @default.
- W4361279752 hasConcept C141071460 @default.
- W4361279752 hasConcept C154945302 @default.
- W4361279752 hasConcept C194828623 @default.
- W4361279752 hasConcept C3020404979 @default.
- W4361279752 hasConcept C41008148 @default.
- W4361279752 hasConcept C50644808 @default.
- W4361279752 hasConcept C71924100 @default.
- W4361279752 hasConceptScore W4361279752C108583219 @default.
- W4361279752 hasConceptScore W4361279752C119857082 @default.
- W4361279752 hasConceptScore W4361279752C126322002 @default.
- W4361279752 hasConceptScore W4361279752C141071460 @default.
- W4361279752 hasConceptScore W4361279752C154945302 @default.
- W4361279752 hasConceptScore W4361279752C194828623 @default.
- W4361279752 hasConceptScore W4361279752C3020404979 @default.
- W4361279752 hasConceptScore W4361279752C41008148 @default.
- W4361279752 hasConceptScore W4361279752C50644808 @default.
- W4361279752 hasConceptScore W4361279752C71924100 @default.
- W4361279752 hasFunder F4320325957 @default.
- W4361279752 hasIssue "1" @default.
- W4361279752 hasLocation W43612797521 @default.
- W4361279752 hasLocation W43612797522 @default.
- W4361279752 hasLocation W43612797523 @default.
- W4361279752 hasOpenAccess W4361279752 @default.
- W4361279752 hasPrimaryLocation W43612797521 @default.
- W4361279752 hasRelatedWork W2795261237 @default.
- W4361279752 hasRelatedWork W3014300295 @default.
- W4361279752 hasRelatedWork W3164822677 @default.
- W4361279752 hasRelatedWork W4223943233 @default.
- W4361279752 hasRelatedWork W4225161397 @default.
- W4361279752 hasRelatedWork W4312200629 @default.
- W4361279752 hasRelatedWork W4360585206 @default.
- W4361279752 hasRelatedWork W4364306694 @default.
- W4361279752 hasRelatedWork W4380075502 @default.
- W4361279752 hasRelatedWork W4380086463 @default.
- W4361279752 hasVolume "13" @default.
- W4361279752 isParatext "false" @default.
- W4361279752 isRetracted "false" @default.
- W4361279752 workType "article" @default.