Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361279969> ?p ?o ?g. }
- W4361279969 endingPage "103687" @default.
- W4361279969 startingPage "103687" @default.
- W4361279969 abstract "Deep representation learning in image classification is an area in computer vision where deep Convolutional Neural Networks (CNNs) have flourished. Nevertheless, developing an efficient image recognition model for real world applications is a challenging task, since image datasets are characterized by instances with a large amount of noise and redundant information. Thus, it is essential to incorporate an intelligent feature extraction and filtering method in order to create robust and efficient image representations. In this work, we propose a Multi-View-CNN framework which drastically boosts the performance of pre-trained CNN models, such as ResNet and VGG in image classification applications. In this approach different type of views of the same initial image are used in order to extract different types of features utilizing pre-trained CNN models. However, in order to reduce the huge dimensional size of the raw CNN’s output features and create a robust image representation, the Principal Component Analysis (PCA) dimension reduction method is applied. Then, all these extracted feature vectors are concatenated building a final composite feature representation of the initial image dataset. Finally, this augmented feature vector is used for training a linear model (Logistic Regression) in order to perform the final classification tasks. The main findings of this work are summarized as follows. First, the proposed Multi-View-CNN framework managed to drastically increase the performance results of pre-trained CNN models. Second, the incorporation of PCA as a final layer into the main CNN topology, instead of using the classical dimension reduction layer components such as Averaging and Max Pooling operations, managed to significantly improve the performance. The whole implementation code of this framework alongside with the datasets used in our experimental simulations was uploaded to our public GitHub repository to the following link: https://github.com/EmmanuelPintelas/A-Multi-View-CNN-Framework-for-Deep-Representation-Learning-in-Image-Classification." @default.
- W4361279969 created "2023-03-31" @default.
- W4361279969 creator A5024258131 @default.
- W4361279969 creator A5053208277 @default.
- W4361279969 creator A5066370772 @default.
- W4361279969 creator A5074255083 @default.
- W4361279969 date "2023-07-01" @default.
- W4361279969 modified "2023-10-14" @default.
- W4361279969 title "A multi-view-CNN framework for deep representation learning in image classification" @default.
- W4361279969 cites W151108041 @default.
- W4361279969 cites W1644641054 @default.
- W4361279969 cites W2125027820 @default.
- W4361279969 cites W2185489349 @default.
- W4361279969 cites W2194775991 @default.
- W4361279969 cites W2253709148 @default.
- W4361279969 cites W2527796832 @default.
- W4361279969 cites W2564782580 @default.
- W4361279969 cites W2622826443 @default.
- W4361279969 cites W2807032201 @default.
- W4361279969 cites W2889326414 @default.
- W4361279969 cites W2891635869 @default.
- W4361279969 cites W2921353139 @default.
- W4361279969 cites W2922509574 @default.
- W4361279969 cites W2954996726 @default.
- W4361279969 cites W2963163009 @default.
- W4361279969 cites W2963509914 @default.
- W4361279969 cites W2964081807 @default.
- W4361279969 cites W2969146404 @default.
- W4361279969 cites W2982058372 @default.
- W4361279969 cites W2998015774 @default.
- W4361279969 cites W3022367143 @default.
- W4361279969 cites W3029530394 @default.
- W4361279969 cites W3099723194 @default.
- W4361279969 cites W3217020749 @default.
- W4361279969 doi "https://doi.org/10.1016/j.cviu.2023.103687" @default.
- W4361279969 hasPublicationYear "2023" @default.
- W4361279969 type Work @default.
- W4361279969 citedByCount "1" @default.
- W4361279969 countsByYear W43612799692023 @default.
- W4361279969 crossrefType "journal-article" @default.
- W4361279969 hasAuthorship W4361279969A5024258131 @default.
- W4361279969 hasAuthorship W4361279969A5053208277 @default.
- W4361279969 hasAuthorship W4361279969A5066370772 @default.
- W4361279969 hasAuthorship W4361279969A5074255083 @default.
- W4361279969 hasConcept C108583219 @default.
- W4361279969 hasConcept C115961682 @default.
- W4361279969 hasConcept C138885662 @default.
- W4361279969 hasConcept C153180895 @default.
- W4361279969 hasConcept C154945302 @default.
- W4361279969 hasConcept C17744445 @default.
- W4361279969 hasConcept C199539241 @default.
- W4361279969 hasConcept C202444582 @default.
- W4361279969 hasConcept C27438332 @default.
- W4361279969 hasConcept C2776359362 @default.
- W4361279969 hasConcept C2776401178 @default.
- W4361279969 hasConcept C33676613 @default.
- W4361279969 hasConcept C33923547 @default.
- W4361279969 hasConcept C41008148 @default.
- W4361279969 hasConcept C41895202 @default.
- W4361279969 hasConcept C52622490 @default.
- W4361279969 hasConcept C59404180 @default.
- W4361279969 hasConcept C70518039 @default.
- W4361279969 hasConcept C75294576 @default.
- W4361279969 hasConcept C81363708 @default.
- W4361279969 hasConcept C94625758 @default.
- W4361279969 hasConceptScore W4361279969C108583219 @default.
- W4361279969 hasConceptScore W4361279969C115961682 @default.
- W4361279969 hasConceptScore W4361279969C138885662 @default.
- W4361279969 hasConceptScore W4361279969C153180895 @default.
- W4361279969 hasConceptScore W4361279969C154945302 @default.
- W4361279969 hasConceptScore W4361279969C17744445 @default.
- W4361279969 hasConceptScore W4361279969C199539241 @default.
- W4361279969 hasConceptScore W4361279969C202444582 @default.
- W4361279969 hasConceptScore W4361279969C27438332 @default.
- W4361279969 hasConceptScore W4361279969C2776359362 @default.
- W4361279969 hasConceptScore W4361279969C2776401178 @default.
- W4361279969 hasConceptScore W4361279969C33676613 @default.
- W4361279969 hasConceptScore W4361279969C33923547 @default.
- W4361279969 hasConceptScore W4361279969C41008148 @default.
- W4361279969 hasConceptScore W4361279969C41895202 @default.
- W4361279969 hasConceptScore W4361279969C52622490 @default.
- W4361279969 hasConceptScore W4361279969C59404180 @default.
- W4361279969 hasConceptScore W4361279969C70518039 @default.
- W4361279969 hasConceptScore W4361279969C75294576 @default.
- W4361279969 hasConceptScore W4361279969C81363708 @default.
- W4361279969 hasConceptScore W4361279969C94625758 @default.
- W4361279969 hasLocation W43612799691 @default.
- W4361279969 hasOpenAccess W4361279969 @default.
- W4361279969 hasPrimaryLocation W43612799691 @default.
- W4361279969 hasRelatedWork W2091080939 @default.
- W4361279969 hasRelatedWork W2169954946 @default.
- W4361279969 hasRelatedWork W2279398222 @default.
- W4361279969 hasRelatedWork W2348666600 @default.
- W4361279969 hasRelatedWork W2373052636 @default.
- W4361279969 hasRelatedWork W2546942002 @default.
- W4361279969 hasRelatedWork W2766604260 @default.
- W4361279969 hasRelatedWork W3154145980 @default.
- W4361279969 hasRelatedWork W3156786002 @default.