Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361282708> ?p ?o ?g. }
- W4361282708 endingPage "78" @default.
- W4361282708 startingPage "78" @default.
- W4361282708 abstract "Histopathology image analysis is considered as a gold standard for the early diagnosis of serious diseases such as cancer. The advancements in the field of computer-aided diagnosis (CAD) have led to the development of several algorithms for accurately segmenting histopathology images. However, the application of swarm intelligence for segmenting histopathology images is less explored. In this study, we introduce a Multilevel Multiobjective Particle Swarm Optimization guided Superpixel algorithm (MMPSO-S) for the effective detection and segmentation of various regions of interest (ROIs) from Hematoxylin and Eosin (H&E)-stained histopathology images. Several experiments are conducted on four different datasets such as TNBC, MoNuSeg, MoNuSAC, and LD to ascertain the performance of the proposed algorithm. For the TNBC dataset, the algorithm achieves a Jaccard coefficient of 0.49, a Dice coefficient of 0.65, and an F-measure of 0.65. For the MoNuSeg dataset, the algorithm achieves a Jaccard coefficient of 0.56, a Dice coefficient of 0.72, and an F-measure of 0.72. Finally, for the LD dataset, the algorithm achieves a precision of 0.96, a recall of 0.99, and an F-measure of 0.98. The comparative results demonstrate the superiority of the proposed method over the simple Particle Swarm Optimization (PSO) algorithm, its variants (Darwinian particle swarm optimization (DPSO), fractional order Darwinian particle swarm optimization (FODPSO)), Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D), non-dominated sorting genetic algorithm 2 (NSGA2), and other state-of-the-art traditional image processing methods." @default.
- W4361282708 created "2023-03-31" @default.
- W4361282708 creator A5000429982 @default.
- W4361282708 creator A5001634004 @default.
- W4361282708 creator A5077898381 @default.
- W4361282708 date "2023-03-29" @default.
- W4361282708 modified "2023-10-14" @default.
- W4361282708 title "Multilevel Multiobjective Particle Swarm Optimization Guided Superpixel Algorithm for Histopathology Image Detection and Segmentation" @default.
- W4361282708 cites W130151125 @default.
- W4361282708 cites W1982658584 @default.
- W4361282708 cites W2047097851 @default.
- W4361282708 cites W2083970667 @default.
- W4361282708 cites W2118246710 @default.
- W4361282708 cites W2133059825 @default.
- W4361282708 cites W2165171393 @default.
- W4361282708 cites W2300502652 @default.
- W4361282708 cites W2460401654 @default.
- W4361282708 cites W2480223706 @default.
- W4361282708 cites W2504150216 @default.
- W4361282708 cites W2586949886 @default.
- W4361282708 cites W2592905743 @default.
- W4361282708 cites W2617630659 @default.
- W4361282708 cites W2649618853 @default.
- W4361282708 cites W2785382690 @default.
- W4361282708 cites W2791158625 @default.
- W4361282708 cites W2802824023 @default.
- W4361282708 cites W2807637204 @default.
- W4361282708 cites W2809428124 @default.
- W4361282708 cites W2884909011 @default.
- W4361282708 cites W2885343725 @default.
- W4361282708 cites W2890699804 @default.
- W4361282708 cites W2897173759 @default.
- W4361282708 cites W2900641597 @default.
- W4361282708 cites W2912902247 @default.
- W4361282708 cites W2919559268 @default.
- W4361282708 cites W2924760056 @default.
- W4361282708 cites W2945843777 @default.
- W4361282708 cites W2971948243 @default.
- W4361282708 cites W2974999766 @default.
- W4361282708 cites W2979773192 @default.
- W4361282708 cites W2981994674 @default.
- W4361282708 cites W3023253965 @default.
- W4361282708 cites W3040784645 @default.
- W4361282708 cites W3087475646 @default.
- W4361282708 cites W3154595990 @default.
- W4361282708 cites W331083581 @default.
- W4361282708 cites W4226135249 @default.
- W4361282708 cites W4242319195 @default.
- W4361282708 cites W4248008659 @default.
- W4361282708 doi "https://doi.org/10.3390/jimaging9040078" @default.
- W4361282708 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37103229" @default.
- W4361282708 hasPublicationYear "2023" @default.
- W4361282708 type Work @default.
- W4361282708 citedByCount "1" @default.
- W4361282708 countsByYear W43612827082023 @default.
- W4361282708 crossrefType "journal-article" @default.
- W4361282708 hasAuthorship W4361282708A5000429982 @default.
- W4361282708 hasAuthorship W4361282708A5001634004 @default.
- W4361282708 hasAuthorship W4361282708A5077898381 @default.
- W4361282708 hasBestOaLocation W43612827081 @default.
- W4361282708 hasConcept C11413529 @default.
- W4361282708 hasConcept C124504099 @default.
- W4361282708 hasConcept C153180895 @default.
- W4361282708 hasConcept C154945302 @default.
- W4361282708 hasConcept C163892561 @default.
- W4361282708 hasConcept C203519979 @default.
- W4361282708 hasConcept C33923547 @default.
- W4361282708 hasConcept C41008148 @default.
- W4361282708 hasConcept C85617194 @default.
- W4361282708 hasConcept C89600930 @default.
- W4361282708 hasConceptScore W4361282708C11413529 @default.
- W4361282708 hasConceptScore W4361282708C124504099 @default.
- W4361282708 hasConceptScore W4361282708C153180895 @default.
- W4361282708 hasConceptScore W4361282708C154945302 @default.
- W4361282708 hasConceptScore W4361282708C163892561 @default.
- W4361282708 hasConceptScore W4361282708C203519979 @default.
- W4361282708 hasConceptScore W4361282708C33923547 @default.
- W4361282708 hasConceptScore W4361282708C41008148 @default.
- W4361282708 hasConceptScore W4361282708C85617194 @default.
- W4361282708 hasConceptScore W4361282708C89600930 @default.
- W4361282708 hasIssue "4" @default.
- W4361282708 hasLocation W43612827081 @default.
- W4361282708 hasLocation W43612827082 @default.
- W4361282708 hasLocation W43612827083 @default.
- W4361282708 hasOpenAccess W4361282708 @default.
- W4361282708 hasPrimaryLocation W43612827081 @default.
- W4361282708 hasRelatedWork W2441762250 @default.
- W4361282708 hasRelatedWork W2936519215 @default.
- W4361282708 hasRelatedWork W3093926553 @default.
- W4361282708 hasRelatedWork W3116883888 @default.
- W4361282708 hasRelatedWork W3120092106 @default.
- W4361282708 hasRelatedWork W4287631720 @default.
- W4361282708 hasRelatedWork W4288366250 @default.
- W4361282708 hasRelatedWork W4308701475 @default.
- W4361282708 hasRelatedWork W4315491877 @default.
- W4361282708 hasRelatedWork W4317748866 @default.
- W4361282708 hasVolume "9" @default.
- W4361282708 isParatext "false" @default.