Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361285449> ?p ?o ?g. }
- W4361285449 endingPage "1655" @default.
- W4361285449 startingPage "1619" @default.
- W4361285449 abstract "Developing explicit, high-order accurate, and stable algorithms for nonlinear differential equations remains an exceedingly difficult task. In this work, a systematic approach is proposed to develop high-order, large time-stepping schemes that can preserve inequality structures shared by a class of differential equations satisfying forward Euler conditions. Strong-stability-preserving (SSP) methods are popular and effective for solving equations of this type. However, few methods can deal with the situation when the time-step size is larger than that allowed by SSP methods. By adopting time-step-dependent stabilization and taking advantage of integrating factor methods in the Shu–Osher form, we propose enforcing the inequality structure preservation by approximating the exponential function using a novel recurrent approximation without harming the convergence. We define sufficient conditions for the obtained parametric Runge–Kutta (pRK) schemes to preserve inequality structures for any time-step size, namely, the underlying Shu–Osher coefficients are non-negative. To remove the requirement of a large stabilization term caused by stiff linear operators, we further develop inequality-preserving parametric integrating factor Runge–Kutta (pIFRK) schemes by incorporating the pRK with an integrating factor related to the stiff term, and enforcing the non-decreasing of abscissas. The only free parameter can be determined a priori based on the SSP coefficient, the time-step size, and the forward Euler condition. We demonstrate that the parametric methods developed here offer an effective and unified approach to study problems that satisfy forward Euler conditions, and cover a wide range of well-known models. Finally, numerical experiments reflect the high-order accuracy, efficiency, and inequality-preserving properties of the proposed schemes." @default.
- W4361285449 created "2023-03-31" @default.
- W4361285449 creator A5069849278 @default.
- W4361285449 creator A5081588482 @default.
- W4361285449 creator A5085126067 @default.
- W4361285449 creator A5090539201 @default.
- W4361285449 date "2023-05-01" @default.
- W4361285449 modified "2023-10-02" @default.
- W4361285449 title "Efficient inequality-preserving integrators for differential equations satisfying forward Euler conditions" @default.
- W4361285449 cites W1486816047 @default.
- W4361285449 cites W1549623142 @default.
- W4361285449 cites W1552636234 @default.
- W4361285449 cites W1963704964 @default.
- W4361285449 cites W1969647398 @default.
- W4361285449 cites W1970532716 @default.
- W4361285449 cites W1970592681 @default.
- W4361285449 cites W1970646811 @default.
- W4361285449 cites W1970698703 @default.
- W4361285449 cites W1975667832 @default.
- W4361285449 cites W1981973195 @default.
- W4361285449 cites W1983164901 @default.
- W4361285449 cites W1985873318 @default.
- W4361285449 cites W1986100983 @default.
- W4361285449 cites W1991231181 @default.
- W4361285449 cites W1995504856 @default.
- W4361285449 cites W2005061077 @default.
- W4361285449 cites W2006634395 @default.
- W4361285449 cites W2008956940 @default.
- W4361285449 cites W2010094764 @default.
- W4361285449 cites W2011155487 @default.
- W4361285449 cites W2024067306 @default.
- W4361285449 cites W2029553188 @default.
- W4361285449 cites W2030113746 @default.
- W4361285449 cites W2034099672 @default.
- W4361285449 cites W2043017073 @default.
- W4361285449 cites W2046439391 @default.
- W4361285449 cites W2049165066 @default.
- W4361285449 cites W2050532272 @default.
- W4361285449 cites W2050969603 @default.
- W4361285449 cites W2053962514 @default.
- W4361285449 cites W2056217824 @default.
- W4361285449 cites W2064390862 @default.
- W4361285449 cites W2073218916 @default.
- W4361285449 cites W2077852010 @default.
- W4361285449 cites W2078290517 @default.
- W4361285449 cites W2080839542 @default.
- W4361285449 cites W2080928083 @default.
- W4361285449 cites W2082649364 @default.
- W4361285449 cites W2088535056 @default.
- W4361285449 cites W2090704787 @default.
- W4361285449 cites W2091674351 @default.
- W4361285449 cites W2093711514 @default.
- W4361285449 cites W2123996636 @default.
- W4361285449 cites W2160010354 @default.
- W4361285449 cites W2290397105 @default.
- W4361285449 cites W2480201659 @default.
- W4361285449 cites W2507484451 @default.
- W4361285449 cites W2511788282 @default.
- W4361285449 cites W2530904288 @default.
- W4361285449 cites W2588794862 @default.
- W4361285449 cites W2603908784 @default.
- W4361285449 cites W2609025143 @default.
- W4361285449 cites W2788004956 @default.
- W4361285449 cites W2891458700 @default.
- W4361285449 cites W2914074116 @default.
- W4361285449 cites W2924663918 @default.
- W4361285449 cites W2951230727 @default.
- W4361285449 cites W2951993410 @default.
- W4361285449 cites W2963203428 @default.
- W4361285449 cites W2963334563 @default.
- W4361285449 cites W2963349085 @default.
- W4361285449 cites W2963533073 @default.
- W4361285449 cites W2972492005 @default.
- W4361285449 cites W3010292040 @default.
- W4361285449 cites W3087123699 @default.
- W4361285449 cites W3109900446 @default.
- W4361285449 cites W3138048675 @default.
- W4361285449 cites W3158473525 @default.
- W4361285449 cites W3159048616 @default.
- W4361285449 cites W3159808963 @default.
- W4361285449 cites W3159813613 @default.
- W4361285449 cites W3160679425 @default.
- W4361285449 cites W3180585873 @default.
- W4361285449 cites W3190071640 @default.
- W4361285449 cites W3214418250 @default.
- W4361285449 cites W4220913090 @default.
- W4361285449 cites W4225659843 @default.
- W4361285449 cites W4285047878 @default.
- W4361285449 cites W4313560907 @default.
- W4361285449 cites W4313800144 @default.
- W4361285449 cites W4315631935 @default.
- W4361285449 doi "https://doi.org/10.1051/m2an/2023029" @default.
- W4361285449 hasPublicationYear "2023" @default.
- W4361285449 type Work @default.
- W4361285449 citedByCount "2" @default.
- W4361285449 countsByYear W43612854492023 @default.
- W4361285449 crossrefType "journal-article" @default.
- W4361285449 hasAuthorship W4361285449A5069849278 @default.