Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361301311> ?p ?o ?g. }
- W4361301311 endingPage "35474" @default.
- W4361301311 startingPage "35457" @default.
- W4361301311 abstract "Text mining methods usually use statistical information to solve text and language-independent procedures. Text mining methods such as polarity detection based on stochastic patterns and rules need many samples to train. On the other hand, deterministic and non-probabilistic methods are easy to solve and faster than other methods but are not efficient in NLP data. In this article, a fast and efficient deterministic method for solving the problems is proposed. In the proposed method firstly we transform text and labels into a set of equations. In the second step, a mathematical solution of ill-posed equations known as Tikhonov regularization was used as a deterministic and non-probabilistic way including additional assumptions, such as smoothness of solution to assign a weight that can reflect the semantic information of each sentimental word. We confirmed the efficiency of the proposed method in the SemEval-2013 competition, ESWC Database and Taboada database as three different cases. We observed improvement of our method over negative polarity due to our proposed mathematical step. Moreover, we demonstrated the effectiveness of our proposed method over the most common and traditional machine learning, stochastic and fuzzy methods." @default.
- W4361301311 created "2023-03-31" @default.
- W4361301311 creator A5017647326 @default.
- W4361301311 creator A5057245031 @default.
- W4361301311 date "2023-03-29" @default.
- W4361301311 modified "2023-09-30" @default.
- W4361301311 title "Deterministic solution of algebraic equations in sentiment analysis" @default.
- W4361301311 cites W2010361013 @default.
- W4361301311 cites W2020634673 @default.
- W4361301311 cites W2037689524 @default.
- W4361301311 cites W2081580037 @default.
- W4361301311 cites W2084046180 @default.
- W4361301311 cites W2086191371 @default.
- W4361301311 cites W2088964239 @default.
- W4361301311 cites W2089256130 @default.
- W4361301311 cites W2114524997 @default.
- W4361301311 cites W2115023510 @default.
- W4361301311 cites W2126854223 @default.
- W4361301311 cites W2127985641 @default.
- W4361301311 cites W2156986752 @default.
- W4361301311 cites W2163455955 @default.
- W4361301311 cites W2166706824 @default.
- W4361301311 cites W2466110284 @default.
- W4361301311 cites W2471502052 @default.
- W4361301311 cites W2527805147 @default.
- W4361301311 cites W2776249353 @default.
- W4361301311 cites W2791061589 @default.
- W4361301311 cites W2803483156 @default.
- W4361301311 cites W2808151358 @default.
- W4361301311 cites W2904745847 @default.
- W4361301311 cites W2905466209 @default.
- W4361301311 cites W2913898221 @default.
- W4361301311 cites W2914820290 @default.
- W4361301311 cites W2916095201 @default.
- W4361301311 cites W2921154353 @default.
- W4361301311 cites W2926264417 @default.
- W4361301311 cites W2935062239 @default.
- W4361301311 cites W2950401545 @default.
- W4361301311 cites W2951925285 @default.
- W4361301311 cites W2954733055 @default.
- W4361301311 cites W2962739339 @default.
- W4361301311 cites W2963088995 @default.
- W4361301311 cites W2963709474 @default.
- W4361301311 cites W2964216356 @default.
- W4361301311 cites W2964388371 @default.
- W4361301311 cites W2966614482 @default.
- W4361301311 cites W2968312322 @default.
- W4361301311 cites W2978218554 @default.
- W4361301311 cites W2984739323 @default.
- W4361301311 cites W2986379544 @default.
- W4361301311 cites W2987413554 @default.
- W4361301311 cites W2989752582 @default.
- W4361301311 cites W2991190749 @default.
- W4361301311 cites W2991565756 @default.
- W4361301311 cites W2993846272 @default.
- W4361301311 cites W2998480789 @default.
- W4361301311 cites W3000369298 @default.
- W4361301311 cites W3002413615 @default.
- W4361301311 cites W3007429412 @default.
- W4361301311 cites W3007702432 @default.
- W4361301311 cites W3028492226 @default.
- W4361301311 cites W3043445890 @default.
- W4361301311 cites W3046883282 @default.
- W4361301311 cites W3089538254 @default.
- W4361301311 cites W3095291804 @default.
- W4361301311 cites W3131446997 @default.
- W4361301311 cites W3166142767 @default.
- W4361301311 cites W4233560649 @default.
- W4361301311 cites W4287146875 @default.
- W4361301311 cites W582033733 @default.
- W4361301311 doi "https://doi.org/10.1007/s11042-023-15140-3" @default.
- W4361301311 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37362725" @default.
- W4361301311 hasPublicationYear "2023" @default.
- W4361301311 type Work @default.
- W4361301311 citedByCount "0" @default.
- W4361301311 crossrefType "journal-article" @default.
- W4361301311 hasAuthorship W4361301311A5017647326 @default.
- W4361301311 hasAuthorship W4361301311A5057245031 @default.
- W4361301311 hasBestOaLocation W43613013111 @default.
- W4361301311 hasConcept C11413529 @default.
- W4361301311 hasConcept C124101348 @default.
- W4361301311 hasConcept C134306372 @default.
- W4361301311 hasConcept C135252773 @default.
- W4361301311 hasConcept C152442038 @default.
- W4361301311 hasConcept C154945302 @default.
- W4361301311 hasConcept C2524010 @default.
- W4361301311 hasConcept C2776135515 @default.
- W4361301311 hasConcept C33923547 @default.
- W4361301311 hasConcept C41008148 @default.
- W4361301311 hasConcept C49937458 @default.
- W4361301311 hasConcept C66402592 @default.
- W4361301311 hasConcept C90805587 @default.
- W4361301311 hasConceptScore W4361301311C11413529 @default.
- W4361301311 hasConceptScore W4361301311C124101348 @default.
- W4361301311 hasConceptScore W4361301311C134306372 @default.
- W4361301311 hasConceptScore W4361301311C135252773 @default.
- W4361301311 hasConceptScore W4361301311C152442038 @default.
- W4361301311 hasConceptScore W4361301311C154945302 @default.