Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361756908> ?p ?o ?g. }
- W4361756908 endingPage "2699" @default.
- W4361756908 startingPage "2690" @default.
- W4361756908 abstract "Motion compensation in radiation therapy is a challenging scenario that requires estimating and forecasting motion of tissue structures to deliver the target dose. Ultrasound offers direct imaging of tissue in real-time and is considered for image guidance in radiation therapy. Recently, fast volumetric ultrasound has gained traction, but motion analysis with such high-dimensional data remains difficult. While deep learning could bring many advantages, such as fast data processing and high performance, it remains unclear how to process sequences of hundreds of image volumes efficiently and effectively. We present a 4D deep learning approach for real-time motion estimation and forecasting using long-term 4D ultrasound data. Using motion traces acquired during radiation therapy combined with various tissue types, our results demonstrate that long-term motion estimation can be performed markerless with a tracking error of 0.35±0.2 mm and with an inference time of less than 5 ms. Also, we demonstrate forecasting directly from the image data up to 900 ms into the future. Overall, our findings highlight that 4D deep learning is a promising approach for motion analysis during radiotherapy." @default.
- W4361756908 created "2023-04-04" @default.
- W4361756908 creator A5000159623 @default.
- W4361756908 creator A5032755649 @default.
- W4361756908 creator A5070915368 @default.
- W4361756908 creator A5074699678 @default.
- W4361756908 creator A5087348362 @default.
- W4361756908 date "2023-09-01" @default.
- W4361756908 modified "2023-10-01" @default.
- W4361756908 title "Real-Time Motion Analysis With 4D Deep Learning for Ultrasound-Guided Radiotherapy" @default.
- W4361756908 cites W1963971409 @default.
- W4361756908 cites W1967193207 @default.
- W4361756908 cites W1975562956 @default.
- W4361756908 cites W1983934388 @default.
- W4361756908 cites W2006931679 @default.
- W4361756908 cites W2009122996 @default.
- W4361756908 cites W2013403423 @default.
- W4361756908 cites W2042485182 @default.
- W4361756908 cites W2054235727 @default.
- W4361756908 cites W2094880919 @default.
- W4361756908 cites W2104253295 @default.
- W4361756908 cites W2153920907 @default.
- W4361756908 cites W2217802989 @default.
- W4361756908 cites W2296073425 @default.
- W4361756908 cites W2310586570 @default.
- W4361756908 cites W2472933288 @default.
- W4361756908 cites W2519699494 @default.
- W4361756908 cites W2531325898 @default.
- W4361756908 cites W2755389330 @default.
- W4361756908 cites W2770341239 @default.
- W4361756908 cites W2806788401 @default.
- W4361756908 cites W2889340074 @default.
- W4361756908 cites W2892058085 @default.
- W4361756908 cites W2899367714 @default.
- W4361756908 cites W2906409044 @default.
- W4361756908 cites W2924017501 @default.
- W4361756908 cites W2952921102 @default.
- W4361756908 cites W2963446712 @default.
- W4361756908 cites W2985629608 @default.
- W4361756908 cites W3027062875 @default.
- W4361756908 cites W3027455516 @default.
- W4361756908 cites W3027924237 @default.
- W4361756908 cites W3043500847 @default.
- W4361756908 cites W3091566443 @default.
- W4361756908 cites W3102101168 @default.
- W4361756908 cites W3104164805 @default.
- W4361756908 cites W3133442129 @default.
- W4361756908 cites W3139404660 @default.
- W4361756908 cites W3160337316 @default.
- W4361756908 cites W3201974489 @default.
- W4361756908 doi "https://doi.org/10.1109/tbme.2023.3262422" @default.
- W4361756908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37030809" @default.
- W4361756908 hasPublicationYear "2023" @default.
- W4361756908 type Work @default.
- W4361756908 citedByCount "0" @default.
- W4361756908 crossrefType "journal-article" @default.
- W4361756908 hasAuthorship W4361756908A5000159623 @default.
- W4361756908 hasAuthorship W4361756908A5032755649 @default.
- W4361756908 hasAuthorship W4361756908A5070915368 @default.
- W4361756908 hasAuthorship W4361756908A5074699678 @default.
- W4361756908 hasAuthorship W4361756908A5087348362 @default.
- W4361756908 hasConcept C10161872 @default.
- W4361756908 hasConcept C104114177 @default.
- W4361756908 hasConcept C108583219 @default.
- W4361756908 hasConcept C126838900 @default.
- W4361756908 hasConcept C128840427 @default.
- W4361756908 hasConcept C154945302 @default.
- W4361756908 hasConcept C2777036941 @default.
- W4361756908 hasConcept C31972630 @default.
- W4361756908 hasConcept C41008148 @default.
- W4361756908 hasConcept C509974204 @default.
- W4361756908 hasConcept C71924100 @default.
- W4361756908 hasConcept C95020103 @default.
- W4361756908 hasConceptScore W4361756908C10161872 @default.
- W4361756908 hasConceptScore W4361756908C104114177 @default.
- W4361756908 hasConceptScore W4361756908C108583219 @default.
- W4361756908 hasConceptScore W4361756908C126838900 @default.
- W4361756908 hasConceptScore W4361756908C128840427 @default.
- W4361756908 hasConceptScore W4361756908C154945302 @default.
- W4361756908 hasConceptScore W4361756908C2777036941 @default.
- W4361756908 hasConceptScore W4361756908C31972630 @default.
- W4361756908 hasConceptScore W4361756908C41008148 @default.
- W4361756908 hasConceptScore W4361756908C509974204 @default.
- W4361756908 hasConceptScore W4361756908C71924100 @default.
- W4361756908 hasConceptScore W4361756908C95020103 @default.
- W4361756908 hasFunder F4320320879 @default.
- W4361756908 hasIssue "9" @default.
- W4361756908 hasLocation W43617569081 @default.
- W4361756908 hasLocation W43617569082 @default.
- W4361756908 hasOpenAccess W4361756908 @default.
- W4361756908 hasPrimaryLocation W43617569081 @default.
- W4361756908 hasRelatedWork W1547698714 @default.
- W4361756908 hasRelatedWork W1983876643 @default.
- W4361756908 hasRelatedWork W2018030692 @default.
- W4361756908 hasRelatedWork W2039023179 @default.
- W4361756908 hasRelatedWork W2108381786 @default.
- W4361756908 hasRelatedWork W2118983851 @default.
- W4361756908 hasRelatedWork W2132969715 @default.