Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361761487> ?p ?o ?g. }
- W4361761487 endingPage "19" @default.
- W4361761487 startingPage "1" @default.
- W4361761487 abstract "Many patients with neurological disorders, such as Ataxia, do not have easy access to neurologists, -especially those living in remote localities and developing/underdeveloped countries. Ataxia is a degenerative disease of the nervous system that surfaces as difficulty with motor control, such as walking imbalance. Previous studies have attempted automatic diagnosis of Ataxia with the help of wearable biomarkers, Kinect, and other sensors. These sensors, while accurate, do not scale efficiently well to naturalistic deployment settings. In this study, we propose a method for identifying ataxic symptoms by analyzing videos of participants walking down a hallway, captured with a standard monocular camera. In a collaboration with 11 medical sites located in 8 different states across the United States, we collected a dataset of 155 videos along with their severity rating from 89 participants (24 controls and 65 diagnosed with or are pre-manifest spinocerebellar ataxias). The participants performed the gait task of the Scale for the Assessment and Rating of Ataxia (SARA). We develop a computer vision pipeline to detect, track, and separate the participants from their surroundings and construct several features from their body pose coordinates to capture gait characteristics such as step width, step length, swing, stability, speed, etc. Our system is able to identify and track a patient in complex scenarios. For example, if there are multiple people present in the video or an interruption from a passerby. Our Ataxia risk-prediction model achieves 83.06% accuracy and an 80.23% F1 score. Similarly, our Ataxia severity-assessment model achieves a mean absolute error (MAE) score of 0.6225 and a Pearson's correlation coefficient score of 0.7268. Our model competitively performed when evaluated on data from medical sites not used during training. Through feature importance analysis, we found that our models associate wider steps, decreased walking speed, and increased instability with greater Ataxia severity, which is consistent with previously established clinical knowledge. Furthermore, we are releasing the models and the body-pose coordinate dataset to the research community - the largest dataset on ataxic gait (to our knowledge). Our models could contribute to improving health access by enabling remote Ataxia assessment in non-clinical settings without requiring any sensors or special cameras. Our dataset will help the computer science community to analyze different characteristics of Ataxia and to develop better algorithms for diagnosing other movement disorders." @default.
- W4361761487 created "2023-04-04" @default.
- W4361761487 creator A5003778478 @default.
- W4361761487 creator A5004457158 @default.
- W4361761487 creator A5007498361 @default.
- W4361761487 creator A5027293126 @default.
- W4361761487 creator A5030475830 @default.
- W4361761487 creator A5037328125 @default.
- W4361761487 creator A5038085079 @default.
- W4361761487 creator A5046491371 @default.
- W4361761487 creator A5049087541 @default.
- W4361761487 creator A5055180300 @default.
- W4361761487 creator A5059213806 @default.
- W4361761487 creator A5062910987 @default.
- W4361761487 creator A5064148394 @default.
- W4361761487 creator A5081274538 @default.
- W4361761487 date "2022-03-27" @default.
- W4361761487 modified "2023-09-27" @default.
- W4361761487 title "Auto-Gait" @default.
- W4361761487 cites W1967915742 @default.
- W4361761487 cites W2012227652 @default.
- W4361761487 cites W2023971087 @default.
- W4361761487 cites W2024255528 @default.
- W4361761487 cites W2053042108 @default.
- W4361761487 cites W2117257456 @default.
- W4361761487 cites W2119073679 @default.
- W4361761487 cites W2140978740 @default.
- W4361761487 cites W2252355370 @default.
- W4361761487 cites W2517331439 @default.
- W4361761487 cites W2520847497 @default.
- W4361761487 cites W2763751100 @default.
- W4361761487 cites W2779290295 @default.
- W4361761487 cites W2892741787 @default.
- W4361761487 cites W2899397408 @default.
- W4361761487 cites W2955689802 @default.
- W4361761487 cites W2972514041 @default.
- W4361761487 cites W2972657490 @default.
- W4361761487 cites W2973179566 @default.
- W4361761487 cites W2975846269 @default.
- W4361761487 cites W2982453279 @default.
- W4361761487 cites W3009092655 @default.
- W4361761487 cites W3010948874 @default.
- W4361761487 cites W3037390350 @default.
- W4361761487 cites W3081989495 @default.
- W4361761487 cites W3084511683 @default.
- W4361761487 cites W3092516038 @default.
- W4361761487 cites W3118905748 @default.
- W4361761487 cites W3119590966 @default.
- W4361761487 cites W3128669835 @default.
- W4361761487 cites W3202142426 @default.
- W4361761487 cites W3214688792 @default.
- W4361761487 cites W4220694472 @default.
- W4361761487 cites W4284881392 @default.
- W4361761487 cites W4288079701 @default.
- W4361761487 doi "https://doi.org/10.1145/3580845" @default.
- W4361761487 hasPublicationYear "2022" @default.
- W4361761487 type Work @default.
- W4361761487 citedByCount "0" @default.
- W4361761487 crossrefType "journal-article" @default.
- W4361761487 hasAuthorship W4361761487A5003778478 @default.
- W4361761487 hasAuthorship W4361761487A5004457158 @default.
- W4361761487 hasAuthorship W4361761487A5007498361 @default.
- W4361761487 hasAuthorship W4361761487A5027293126 @default.
- W4361761487 hasAuthorship W4361761487A5030475830 @default.
- W4361761487 hasAuthorship W4361761487A5037328125 @default.
- W4361761487 hasAuthorship W4361761487A5038085079 @default.
- W4361761487 hasAuthorship W4361761487A5046491371 @default.
- W4361761487 hasAuthorship W4361761487A5049087541 @default.
- W4361761487 hasAuthorship W4361761487A5055180300 @default.
- W4361761487 hasAuthorship W4361761487A5059213806 @default.
- W4361761487 hasAuthorship W4361761487A5062910987 @default.
- W4361761487 hasAuthorship W4361761487A5064148394 @default.
- W4361761487 hasAuthorship W4361761487A5081274538 @default.
- W4361761487 hasBestOaLocation W43617614871 @default.
- W4361761487 hasConcept C127413603 @default.
- W4361761487 hasConcept C138496976 @default.
- W4361761487 hasConcept C151800584 @default.
- W4361761487 hasConcept C154945302 @default.
- W4361761487 hasConcept C15744967 @default.
- W4361761487 hasConcept C169760540 @default.
- W4361761487 hasConcept C201995342 @default.
- W4361761487 hasConcept C2779500118 @default.
- W4361761487 hasConcept C2780148635 @default.
- W4361761487 hasConcept C2780451532 @default.
- W4361761487 hasConcept C2780906641 @default.
- W4361761487 hasConcept C41008148 @default.
- W4361761487 hasConcept C71924100 @default.
- W4361761487 hasConcept C83849319 @default.
- W4361761487 hasConcept C99508421 @default.
- W4361761487 hasConceptScore W4361761487C127413603 @default.
- W4361761487 hasConceptScore W4361761487C138496976 @default.
- W4361761487 hasConceptScore W4361761487C151800584 @default.
- W4361761487 hasConceptScore W4361761487C154945302 @default.
- W4361761487 hasConceptScore W4361761487C15744967 @default.
- W4361761487 hasConceptScore W4361761487C169760540 @default.
- W4361761487 hasConceptScore W4361761487C201995342 @default.
- W4361761487 hasConceptScore W4361761487C2779500118 @default.
- W4361761487 hasConceptScore W4361761487C2780148635 @default.