Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361761492> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4361761492 endingPage "14" @default.
- W4361761492 startingPage "1" @default.
- W4361761492 abstract "In the last decade, MIMO spatial multiplexing and distributed beamforming play a significant role in improving data throughput through cooperative transmission. It has been widely used in wireless communication, especially in 6 G. However, the distributed uplink beamforming is still an open problem in highly dynamic environments. However, the proposed 6 G technology represents the further integration of deep learning and wireless communication. In this paper, we propose Argute Distributed Uplink Beamforming (ArguteDUB), which uses a feedback algorithm with an offline-trained deep learning model to implement highly dynamic distributed uplink beamforming for the Internet of Vehicles (IoV) in 6 G. Specifically, each vehicle enables the base station (BS)/access point (AP) to separate different channel state information (CSI) by inserting orthogonal sequences into the sending data. The BS adopts deep learning to filter the noise and predict the beamforming weight to achieve phase synchronization. Unlike traditional distributed uplink beamforming, ArguteDUB can be adapted to the highly dynamic time-varying channels. The simple network structure ensures the fast response of ArguteDUB. In addition, we make ArguteDUB Orthogonal Frequency Division Multiplexing (OFDM) compatible so that it can be easily deployed in 6 G networks. Our evaluation shows that ArguteDUB has an signal-to-noise ratio (SNR) gain of about 5 dB to 5.3 dB over the single vehicle transmission mode." @default.
- W4361761492 created "2023-04-04" @default.
- W4361761492 creator A5005047027 @default.
- W4361761492 creator A5027749802 @default.
- W4361761492 creator A5033431582 @default.
- W4361761492 creator A5047262526 @default.
- W4361761492 creator A5047767249 @default.
- W4361761492 creator A5056209905 @default.
- W4361761492 creator A5065788487 @default.
- W4361761492 creator A5068607867 @default.
- W4361761492 creator A5072308822 @default.
- W4361761492 date "2023-01-01" @default.
- W4361761492 modified "2023-09-27" @default.
- W4361761492 title "ArguteDUB: Deep Learning Based Distributed Uplink Beamforming in 6G-Based IoV" @default.
- W4361761492 doi "https://doi.org/10.1109/tmc.2023.3262320" @default.
- W4361761492 hasPublicationYear "2023" @default.
- W4361761492 type Work @default.
- W4361761492 citedByCount "0" @default.
- W4361761492 crossrefType "journal-article" @default.
- W4361761492 hasAuthorship W4361761492A5005047027 @default.
- W4361761492 hasAuthorship W4361761492A5027749802 @default.
- W4361761492 hasAuthorship W4361761492A5033431582 @default.
- W4361761492 hasAuthorship W4361761492A5047262526 @default.
- W4361761492 hasAuthorship W4361761492A5047767249 @default.
- W4361761492 hasAuthorship W4361761492A5056209905 @default.
- W4361761492 hasAuthorship W4361761492A5065788487 @default.
- W4361761492 hasAuthorship W4361761492A5068607867 @default.
- W4361761492 hasAuthorship W4361761492A5072308822 @default.
- W4361761492 hasConcept C108037233 @default.
- W4361761492 hasConcept C127162648 @default.
- W4361761492 hasConcept C138660444 @default.
- W4361761492 hasConcept C160562895 @default.
- W4361761492 hasConcept C19275194 @default.
- W4361761492 hasConcept C207987634 @default.
- W4361761492 hasConcept C31258907 @default.
- W4361761492 hasConcept C40409654 @default.
- W4361761492 hasConcept C41008148 @default.
- W4361761492 hasConcept C54197355 @default.
- W4361761492 hasConcept C555944384 @default.
- W4361761492 hasConcept C57466844 @default.
- W4361761492 hasConcept C68649174 @default.
- W4361761492 hasConcept C761482 @default.
- W4361761492 hasConcept C76155785 @default.
- W4361761492 hasConcept C79403827 @default.
- W4361761492 hasConceptScore W4361761492C108037233 @default.
- W4361761492 hasConceptScore W4361761492C127162648 @default.
- W4361761492 hasConceptScore W4361761492C138660444 @default.
- W4361761492 hasConceptScore W4361761492C160562895 @default.
- W4361761492 hasConceptScore W4361761492C19275194 @default.
- W4361761492 hasConceptScore W4361761492C207987634 @default.
- W4361761492 hasConceptScore W4361761492C31258907 @default.
- W4361761492 hasConceptScore W4361761492C40409654 @default.
- W4361761492 hasConceptScore W4361761492C41008148 @default.
- W4361761492 hasConceptScore W4361761492C54197355 @default.
- W4361761492 hasConceptScore W4361761492C555944384 @default.
- W4361761492 hasConceptScore W4361761492C57466844 @default.
- W4361761492 hasConceptScore W4361761492C68649174 @default.
- W4361761492 hasConceptScore W4361761492C761482 @default.
- W4361761492 hasConceptScore W4361761492C76155785 @default.
- W4361761492 hasConceptScore W4361761492C79403827 @default.
- W4361761492 hasLocation W43617614921 @default.
- W4361761492 hasOpenAccess W4361761492 @default.
- W4361761492 hasPrimaryLocation W43617614921 @default.
- W4361761492 hasRelatedWork W1568716911 @default.
- W4361761492 hasRelatedWork W1761092975 @default.
- W4361761492 hasRelatedWork W2015560986 @default.
- W4361761492 hasRelatedWork W2039371680 @default.
- W4361761492 hasRelatedWork W2129121469 @default.
- W4361761492 hasRelatedWork W2168246236 @default.
- W4361761492 hasRelatedWork W2366613181 @default.
- W4361761492 hasRelatedWork W3010602713 @default.
- W4361761492 hasRelatedWork W3130760175 @default.
- W4361761492 hasRelatedWork W4200377718 @default.
- W4361761492 isParatext "false" @default.
- W4361761492 isRetracted "false" @default.
- W4361761492 workType "article" @default.