Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361761962> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4361761962 endingPage "534" @default.
- W4361761962 startingPage "526" @default.
- W4361761962 abstract "Deep subspace clustering (DSC) has become a research hotspot and achieved considerable success in unsupervised hyperspectral image (HSI) classification domain. However, previous researches seldom consider global spatial-spectral information, which leads to an unsatisfactory performance when processing HSI with background (can be seen as a type of noise). In this work, we propose a Graph Spatial-Spectral Deep Subspace Clustering (GS2DSC) method which can make full use of the spatial-spectral information of HSI data. Specifically, a graph attention auto-encoder is utilized to extract the graph-structed features of bands and the spectral information. Then, we employ a fusion strategy to fuse the band-level global spatial-spectral features and the patch-level local spatial-spectral features into joint features to enhance the spatial-spectral information. Our proposed method alleviates the bad influence of the background information and produce an informative affinity matrix. The experimental results on two classic HSI datasets show that the overall accuracy of our approach is improved by 5.31% and 3.05% respectively compared with other DSC-based methods, which demonstrates that the structure can enhance the spatial-spectral information and perform better classification results." @default.
- W4361761962 created "2023-04-04" @default.
- W4361761962 creator A5001005426 @default.
- W4361761962 creator A5007518360 @default.
- W4361761962 creator A5034946941 @default.
- W4361761962 creator A5051682933 @default.
- W4361761962 creator A5076087122 @default.
- W4361761962 date "2023-01-01" @default.
- W4361761962 modified "2023-09-25" @default.
- W4361761962 title "Graph Spatial-Spectral Deep Subspace Clustering for Hyperspectral Image Classification" @default.
- W4361761962 cites W1964315230 @default.
- W4361761962 cites W1993962865 @default.
- W4361761962 cites W2039409148 @default.
- W4361761962 cites W2122269389 @default.
- W4361761962 cites W2150593711 @default.
- W4361761962 cites W2896340099 @default.
- W4361761962 cites W3030265082 @default.
- W4361761962 cites W3091687261 @default.
- W4361761962 cites W3098561772 @default.
- W4361761962 cites W3135512617 @default.
- W4361761962 cites W3175662935 @default.
- W4361761962 cites W3178695133 @default.
- W4361761962 cites W4243951698 @default.
- W4361761962 doi "https://doi.org/10.1007/978-981-99-0923-0_53" @default.
- W4361761962 hasPublicationYear "2023" @default.
- W4361761962 type Work @default.
- W4361761962 citedByCount "0" @default.
- W4361761962 crossrefType "book-chapter" @default.
- W4361761962 hasAuthorship W4361761962A5001005426 @default.
- W4361761962 hasAuthorship W4361761962A5007518360 @default.
- W4361761962 hasAuthorship W4361761962A5034946941 @default.
- W4361761962 hasAuthorship W4361761962A5051682933 @default.
- W4361761962 hasAuthorship W4361761962A5076087122 @default.
- W4361761962 hasConcept C101738243 @default.
- W4361761962 hasConcept C105611402 @default.
- W4361761962 hasConcept C132525143 @default.
- W4361761962 hasConcept C153180895 @default.
- W4361761962 hasConcept C154945302 @default.
- W4361761962 hasConcept C159078339 @default.
- W4361761962 hasConcept C159620131 @default.
- W4361761962 hasConcept C205649164 @default.
- W4361761962 hasConcept C32834561 @default.
- W4361761962 hasConcept C41008148 @default.
- W4361761962 hasConcept C50644808 @default.
- W4361761962 hasConcept C62649853 @default.
- W4361761962 hasConcept C73555534 @default.
- W4361761962 hasConcept C80444323 @default.
- W4361761962 hasConceptScore W4361761962C101738243 @default.
- W4361761962 hasConceptScore W4361761962C105611402 @default.
- W4361761962 hasConceptScore W4361761962C132525143 @default.
- W4361761962 hasConceptScore W4361761962C153180895 @default.
- W4361761962 hasConceptScore W4361761962C154945302 @default.
- W4361761962 hasConceptScore W4361761962C159078339 @default.
- W4361761962 hasConceptScore W4361761962C159620131 @default.
- W4361761962 hasConceptScore W4361761962C205649164 @default.
- W4361761962 hasConceptScore W4361761962C32834561 @default.
- W4361761962 hasConceptScore W4361761962C41008148 @default.
- W4361761962 hasConceptScore W4361761962C50644808 @default.
- W4361761962 hasConceptScore W4361761962C62649853 @default.
- W4361761962 hasConceptScore W4361761962C73555534 @default.
- W4361761962 hasConceptScore W4361761962C80444323 @default.
- W4361761962 hasLocation W43617619621 @default.
- W4361761962 hasOpenAccess W4361761962 @default.
- W4361761962 hasPrimaryLocation W43617619621 @default.
- W4361761962 hasRelatedWork W1966869234 @default.
- W4361761962 hasRelatedWork W2139206670 @default.
- W4361761962 hasRelatedWork W2546610528 @default.
- W4361761962 hasRelatedWork W2763731268 @default.
- W4361761962 hasRelatedWork W2775464024 @default.
- W4361761962 hasRelatedWork W2900180889 @default.
- W4361761962 hasRelatedWork W2909041182 @default.
- W4361761962 hasRelatedWork W2920797426 @default.
- W4361761962 hasRelatedWork W4295836112 @default.
- W4361761962 hasRelatedWork W4296504239 @default.
- W4361761962 isParatext "false" @default.
- W4361761962 isRetracted "false" @default.
- W4361761962 workType "book-chapter" @default.