Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361762693> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4361762693 endingPage "416" @default.
- W4361762693 startingPage "408" @default.
- W4361762693 abstract "Recently, depth methods have developed rapidly and achieved remarkable achievements in the field of hyperspectral image classification. Deep learning largely depends on high-quality labels. However, for hyperspectral images, obtaining high-quality labels is difficult, expensive and time-consuming. For the problem of the small number of training samples, We propose a Spatial-spectral Siamese network, which randomly selects a number of tasks composed of support sets and query sets on the training set. The network is used to extract spectral and spatial features and fuse them to obtain spatial-spectral features. The fused Spatial-spectral features are trained to optimize the Spatial-spectral Siamese network by contrastive loss, and the similarity loss is used to measure the similarity score between samples to optimize the similarity network. In addition, the cluster labels obtained by clustering are used as supervised information, The performance of network classification is further optimized by monitoring the clustering task and using a large amount of unlabeled sample information. The results of two frequently used hyperspectral data sets show that the proposed method still has good performance and effect in classification accuracy when training samples are very small." @default.
- W4361762693 created "2023-04-04" @default.
- W4361762693 creator A5001005426 @default.
- W4361762693 creator A5003095535 @default.
- W4361762693 creator A5007518360 @default.
- W4361762693 creator A5034946941 @default.
- W4361762693 creator A5043447006 @default.
- W4361762693 creator A5076087122 @default.
- W4361762693 date "2023-01-01" @default.
- W4361762693 modified "2023-09-27" @default.
- W4361762693 title "Spatial-Spectral Siamese and Similarity Network for Hyperspectral Image Classification" @default.
- W4361762693 cites W1799946925 @default.
- W4361762693 cites W2761397596 @default.
- W4361762693 cites W2914331134 @default.
- W4361762693 cites W2921445432 @default.
- W4361762693 cites W3011495011 @default.
- W4361762693 doi "https://doi.org/10.1007/978-981-99-0923-0_41" @default.
- W4361762693 hasPublicationYear "2023" @default.
- W4361762693 type Work @default.
- W4361762693 citedByCount "0" @default.
- W4361762693 crossrefType "book-chapter" @default.
- W4361762693 hasAuthorship W4361762693A5001005426 @default.
- W4361762693 hasAuthorship W4361762693A5003095535 @default.
- W4361762693 hasAuthorship W4361762693A5007518360 @default.
- W4361762693 hasAuthorship W4361762693A5034946941 @default.
- W4361762693 hasAuthorship W4361762693A5043447006 @default.
- W4361762693 hasAuthorship W4361762693A5076087122 @default.
- W4361762693 hasConcept C103278499 @default.
- W4361762693 hasConcept C105611402 @default.
- W4361762693 hasConcept C105795698 @default.
- W4361762693 hasConcept C115961682 @default.
- W4361762693 hasConcept C119599485 @default.
- W4361762693 hasConcept C124101348 @default.
- W4361762693 hasConcept C127413603 @default.
- W4361762693 hasConcept C141353440 @default.
- W4361762693 hasConcept C153180895 @default.
- W4361762693 hasConcept C154945302 @default.
- W4361762693 hasConcept C159078339 @default.
- W4361762693 hasConcept C159620131 @default.
- W4361762693 hasConcept C177264268 @default.
- W4361762693 hasConcept C199360897 @default.
- W4361762693 hasConcept C2776517306 @default.
- W4361762693 hasConcept C33923547 @default.
- W4361762693 hasConcept C41008148 @default.
- W4361762693 hasConcept C58489278 @default.
- W4361762693 hasConcept C73555534 @default.
- W4361762693 hasConceptScore W4361762693C103278499 @default.
- W4361762693 hasConceptScore W4361762693C105611402 @default.
- W4361762693 hasConceptScore W4361762693C105795698 @default.
- W4361762693 hasConceptScore W4361762693C115961682 @default.
- W4361762693 hasConceptScore W4361762693C119599485 @default.
- W4361762693 hasConceptScore W4361762693C124101348 @default.
- W4361762693 hasConceptScore W4361762693C127413603 @default.
- W4361762693 hasConceptScore W4361762693C141353440 @default.
- W4361762693 hasConceptScore W4361762693C153180895 @default.
- W4361762693 hasConceptScore W4361762693C154945302 @default.
- W4361762693 hasConceptScore W4361762693C159078339 @default.
- W4361762693 hasConceptScore W4361762693C159620131 @default.
- W4361762693 hasConceptScore W4361762693C177264268 @default.
- W4361762693 hasConceptScore W4361762693C199360897 @default.
- W4361762693 hasConceptScore W4361762693C2776517306 @default.
- W4361762693 hasConceptScore W4361762693C33923547 @default.
- W4361762693 hasConceptScore W4361762693C41008148 @default.
- W4361762693 hasConceptScore W4361762693C58489278 @default.
- W4361762693 hasConceptScore W4361762693C73555534 @default.
- W4361762693 hasLocation W43617626931 @default.
- W4361762693 hasOpenAccess W4361762693 @default.
- W4361762693 hasPrimaryLocation W43617626931 @default.
- W4361762693 hasRelatedWork W1488437289 @default.
- W4361762693 hasRelatedWork W1966869234 @default.
- W4361762693 hasRelatedWork W2024526072 @default.
- W4361762693 hasRelatedWork W2187249578 @default.
- W4361762693 hasRelatedWork W2326113450 @default.
- W4361762693 hasRelatedWork W2909041182 @default.
- W4361762693 hasRelatedWork W2909589102 @default.
- W4361762693 hasRelatedWork W2920797426 @default.
- W4361762693 hasRelatedWork W3113569680 @default.
- W4361762693 hasRelatedWork W67721698 @default.
- W4361762693 isParatext "false" @default.
- W4361762693 isRetracted "false" @default.
- W4361762693 workType "book-chapter" @default.