Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361767515> ?p ?o ?g. }
- W4361767515 endingPage "10076" @default.
- W4361767515 startingPage "10063" @default.
- W4361767515 abstract "Eco-driving for trains has traditionally focused on minimizing mechanical energy consumption at wheels, while completely ignoring traction chain losses that are rather significant. This article presents a computationally efficient approach to minimize the total electrical energy consumption from traction substations (TS). After a nonlinear and non-convex program is formulated in time domain, a nonlinear and non-convex program is formulated in space domain to overcome the drawbacks of the model in time domain. By convex modeling steps, the non-convex program in space domain is reformulated as a convex program that can be efficiently solved. To further reduce computational effort, a real-time iteration sequential quadratic programming (SQP) algorithm is proposed to solve the convex program in a model predictive control framework. Numerical results indicate that the proposed SQP method yields a near-optimal solution with high computational efficiency. Compared to a traditional mechanical energy consumption model, a TS-to-traction energy efficiency can be improved." @default.
- W4361767515 created "2023-04-04" @default.
- W4361767515 creator A5007503953 @default.
- W4361767515 creator A5016749651 @default.
- W4361767515 creator A5029958568 @default.
- W4361767515 creator A5039711250 @default.
- W4361767515 creator A5076146983 @default.
- W4361767515 creator A5077665622 @default.
- W4361767515 date "2023-08-01" @default.
- W4361767515 modified "2023-10-15" @default.
- W4361767515 title "Eco-Driving for Metro Trains: A Computationally Efficient Approach Using Convex Programming" @default.
- W4361767515 cites W1852135537 @default.
- W4361767515 cites W1904944567 @default.
- W4361767515 cites W1974920357 @default.
- W4361767515 cites W1979705599 @default.
- W4361767515 cites W1988986641 @default.
- W4361767515 cites W1990375719 @default.
- W4361767515 cites W1993519550 @default.
- W4361767515 cites W2040042407 @default.
- W4361767515 cites W2041388425 @default.
- W4361767515 cites W2049670620 @default.
- W4361767515 cites W2063032533 @default.
- W4361767515 cites W2070392617 @default.
- W4361767515 cites W2095113878 @default.
- W4361767515 cites W2096536313 @default.
- W4361767515 cites W2123871098 @default.
- W4361767515 cites W2153853612 @default.
- W4361767515 cites W2155488468 @default.
- W4361767515 cites W2165167046 @default.
- W4361767515 cites W2518833181 @default.
- W4361767515 cites W2526006345 @default.
- W4361767515 cites W2759715964 @default.
- W4361767515 cites W2766282873 @default.
- W4361767515 cites W2784186150 @default.
- W4361767515 cites W2811238716 @default.
- W4361767515 cites W2912117457 @default.
- W4361767515 cites W2917118656 @default.
- W4361767515 cites W2968305685 @default.
- W4361767515 cites W2981763771 @default.
- W4361767515 cites W3013584414 @default.
- W4361767515 cites W3081881315 @default.
- W4361767515 cites W3101887541 @default.
- W4361767515 cites W3111380229 @default.
- W4361767515 cites W3111690302 @default.
- W4361767515 cites W3118620468 @default.
- W4361767515 cites W3129782579 @default.
- W4361767515 cites W3130686544 @default.
- W4361767515 cites W3185067203 @default.
- W4361767515 cites W3204693109 @default.
- W4361767515 cites W3207305612 @default.
- W4361767515 cites W3209336782 @default.
- W4361767515 cites W4205815563 @default.
- W4361767515 cites W4210461542 @default.
- W4361767515 cites W4250589301 @default.
- W4361767515 cites W4293515130 @default.
- W4361767515 doi "https://doi.org/10.1109/tvt.2023.3262345" @default.
- W4361767515 hasPublicationYear "2023" @default.
- W4361767515 type Work @default.
- W4361767515 citedByCount "0" @default.
- W4361767515 crossrefType "journal-article" @default.
- W4361767515 hasAuthorship W4361767515A5007503953 @default.
- W4361767515 hasAuthorship W4361767515A5016749651 @default.
- W4361767515 hasAuthorship W4361767515A5029958568 @default.
- W4361767515 hasAuthorship W4361767515A5039711250 @default.
- W4361767515 hasAuthorship W4361767515A5076146983 @default.
- W4361767515 hasAuthorship W4361767515A5077665622 @default.
- W4361767515 hasConcept C112680207 @default.
- W4361767515 hasConcept C115527620 @default.
- W4361767515 hasConcept C119599485 @default.
- W4361767515 hasConcept C121332964 @default.
- W4361767515 hasConcept C126255220 @default.
- W4361767515 hasConcept C127413603 @default.
- W4361767515 hasConcept C134306372 @default.
- W4361767515 hasConcept C157972887 @default.
- W4361767515 hasConcept C158622935 @default.
- W4361767515 hasConcept C190839683 @default.
- W4361767515 hasConcept C198927703 @default.
- W4361767515 hasConcept C205649164 @default.
- W4361767515 hasConcept C2524010 @default.
- W4361767515 hasConcept C2780165032 @default.
- W4361767515 hasConcept C33923547 @default.
- W4361767515 hasConcept C36503486 @default.
- W4361767515 hasConcept C38834483 @default.
- W4361767515 hasConcept C41008148 @default.
- W4361767515 hasConcept C58640448 @default.
- W4361767515 hasConcept C62520636 @default.
- W4361767515 hasConcept C78519656 @default.
- W4361767515 hasConcept C81845259 @default.
- W4361767515 hasConceptScore W4361767515C112680207 @default.
- W4361767515 hasConceptScore W4361767515C115527620 @default.
- W4361767515 hasConceptScore W4361767515C119599485 @default.
- W4361767515 hasConceptScore W4361767515C121332964 @default.
- W4361767515 hasConceptScore W4361767515C126255220 @default.
- W4361767515 hasConceptScore W4361767515C127413603 @default.
- W4361767515 hasConceptScore W4361767515C134306372 @default.
- W4361767515 hasConceptScore W4361767515C157972887 @default.
- W4361767515 hasConceptScore W4361767515C158622935 @default.
- W4361767515 hasConceptScore W4361767515C190839683 @default.