Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361791339> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4361791339 abstract "With the continuous development of deep learning, transformer has become a new leader in the field of vision in recent years. Transformer has not only completely changed the field of natural language processing (NLP), but also made some pioneering work in the field of computer vision (CV). Compared with convolutional neural network (CNN), Visual Transformer (ViT) has achieved excellent performance on many benchmarks such as ImageNet, COCO and ADE20k, depending on its excellent modeling ability. In the process of experiments, the final results are often overfitted due to insufficient training data, too many iterations and too complex models. In view of the over fitting caused by insufficient training data, the most direct way is to collect more training data. However, data acquisition is often the most difficult part. In the field of CV, we can enrich the distribution of training data by using data augmentation, so that the model obtained through the training set has stronger generalization ability. In this paper, from the perspective of training data processing, Alzheimer's disease data set is taken as a sample, and the sample data set is enhanced by Flip and rotation, Cutmix and Mixup. The results show that the accuracy in test data of the base model is 86.51%. Then, the Flip and rotation augmentation reaches 86.79%, a lower one, shows this data augmentation is not suitable for this task. The Cutmix reaches 88.95%, which improves the prediction accuracy of the model. The effect of Mixup is the best, reaching 89.61%. The Mixup augmentation method can effectively improve accuracy and overcome overfitting." @default.
- W4361791339 created "2023-04-05" @default.
- W4361791339 creator A5023837077 @default.
- W4361791339 creator A5038329998 @default.
- W4361791339 creator A5039815946 @default.
- W4361791339 creator A5044078732 @default.
- W4361791339 creator A5068502781 @default.
- W4361791339 date "2023-01-10" @default.
- W4361791339 modified "2023-09-27" @default.
- W4361791339 title "Augmentation of Alzheimer Images Base on Visual Transform" @default.
- W4361791339 cites W2765407302 @default.
- W4361791339 cites W2992308087 @default.
- W4361791339 cites W3046045122 @default.
- W4361791339 doi "https://doi.org/10.1109/iccrd56364.2023.10080298" @default.
- W4361791339 hasPublicationYear "2023" @default.
- W4361791339 type Work @default.
- W4361791339 citedByCount "0" @default.
- W4361791339 crossrefType "proceedings-article" @default.
- W4361791339 hasAuthorship W4361791339A5023837077 @default.
- W4361791339 hasAuthorship W4361791339A5038329998 @default.
- W4361791339 hasAuthorship W4361791339A5039815946 @default.
- W4361791339 hasAuthorship W4361791339A5044078732 @default.
- W4361791339 hasAuthorship W4361791339A5068502781 @default.
- W4361791339 hasConcept C119599485 @default.
- W4361791339 hasConcept C119857082 @default.
- W4361791339 hasConcept C127413603 @default.
- W4361791339 hasConcept C134306372 @default.
- W4361791339 hasConcept C138827492 @default.
- W4361791339 hasConcept C153180895 @default.
- W4361791339 hasConcept C154945302 @default.
- W4361791339 hasConcept C165801399 @default.
- W4361791339 hasConcept C16910744 @default.
- W4361791339 hasConcept C169903167 @default.
- W4361791339 hasConcept C177148314 @default.
- W4361791339 hasConcept C199360897 @default.
- W4361791339 hasConcept C33923547 @default.
- W4361791339 hasConcept C41008148 @default.
- W4361791339 hasConcept C50644808 @default.
- W4361791339 hasConcept C51632099 @default.
- W4361791339 hasConcept C58489278 @default.
- W4361791339 hasConcept C66322947 @default.
- W4361791339 hasConcept C67186912 @default.
- W4361791339 hasConcept C77088390 @default.
- W4361791339 hasConcept C81363708 @default.
- W4361791339 hasConceptScore W4361791339C119599485 @default.
- W4361791339 hasConceptScore W4361791339C119857082 @default.
- W4361791339 hasConceptScore W4361791339C127413603 @default.
- W4361791339 hasConceptScore W4361791339C134306372 @default.
- W4361791339 hasConceptScore W4361791339C138827492 @default.
- W4361791339 hasConceptScore W4361791339C153180895 @default.
- W4361791339 hasConceptScore W4361791339C154945302 @default.
- W4361791339 hasConceptScore W4361791339C165801399 @default.
- W4361791339 hasConceptScore W4361791339C16910744 @default.
- W4361791339 hasConceptScore W4361791339C169903167 @default.
- W4361791339 hasConceptScore W4361791339C177148314 @default.
- W4361791339 hasConceptScore W4361791339C199360897 @default.
- W4361791339 hasConceptScore W4361791339C33923547 @default.
- W4361791339 hasConceptScore W4361791339C41008148 @default.
- W4361791339 hasConceptScore W4361791339C50644808 @default.
- W4361791339 hasConceptScore W4361791339C51632099 @default.
- W4361791339 hasConceptScore W4361791339C58489278 @default.
- W4361791339 hasConceptScore W4361791339C66322947 @default.
- W4361791339 hasConceptScore W4361791339C67186912 @default.
- W4361791339 hasConceptScore W4361791339C77088390 @default.
- W4361791339 hasConceptScore W4361791339C81363708 @default.
- W4361791339 hasLocation W43617913391 @default.
- W4361791339 hasOpenAccess W4361791339 @default.
- W4361791339 hasPrimaryLocation W43617913391 @default.
- W4361791339 hasRelatedWork W163918491 @default.
- W4361791339 hasRelatedWork W2012689841 @default.
- W4361791339 hasRelatedWork W2071508803 @default.
- W4361791339 hasRelatedWork W2099731689 @default.
- W4361791339 hasRelatedWork W2122552724 @default.
- W4361791339 hasRelatedWork W2792951589 @default.
- W4361791339 hasRelatedWork W2991483587 @default.
- W4361791339 hasRelatedWork W4287595784 @default.
- W4361791339 hasRelatedWork W4309907966 @default.
- W4361791339 hasRelatedWork W4324137370 @default.
- W4361791339 isParatext "false" @default.
- W4361791339 isRetracted "false" @default.
- W4361791339 workType "article" @default.