Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361792267> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4361792267 abstract "Stress has been identified as one of the contributing reasons to vehicle crashes, which cost governments and society a large amount of money in terms of lost lives and productivity. Any alteration that creates physical, emotional, or physiological strain when driving is referred to as driving stress. Driving stress may vary depending on the different road conditions of driving. Understanding drivers’ discontent is one of the most important areas for improving intelligent transportation systems over the existing system. This study presents methods for analyzing and classifying EMG data collected during real-world driving tasks at different driving locations using a convolutional neural network (CNN). In this paper, there are 9 subjects (driver records) of at least 60 minutes duration. Developing CNN from scratch is difficult and it also demands specialized knowledge. As it was previously trained on the ImageNet dataset and could operate effectively with the small amount of training set, pre-trained CNN minimizes the effort of developing models from scratch. CNN is employed in the proposed work to classify driving stress levels by evaluating discriminatory patterns in spectrogram images. In the proposed work, the performance of pre-trained CNN SqueezeNet, GoogLeNet, and ResNet50 in identifying the level of stress (low, medium, and high) is compared. GoogLeNet performed best, with an accuracy of training and validation of 85.71% and 66.67%. Followed by ResNet50 with an accuracy of 71.43% and 66.67% and SqueezeNet with an accuracy of 71.43% and 55.56%, respectively." @default.
- W4361792267 created "2023-04-05" @default.
- W4361792267 creator A5027114476 @default.
- W4361792267 creator A5040678612 @default.
- W4361792267 creator A5041679934 @default.
- W4361792267 creator A5080461908 @default.
- W4361792267 creator A5085552100 @default.
- W4361792267 date "2022-12-07" @default.
- W4361792267 modified "2023-09-29" @default.
- W4361792267 title "Deep Learning-Based Classification of Stress Levels during Real-World Driving Tasks" @default.
- W4361792267 cites W2158728671 @default.
- W4361792267 cites W2282066275 @default.
- W4361792267 cites W2474638510 @default.
- W4361792267 cites W2613383116 @default.
- W4361792267 cites W2954948187 @default.
- W4361792267 doi "https://doi.org/10.1109/iecbes54088.2022.10079333" @default.
- W4361792267 hasPublicationYear "2022" @default.
- W4361792267 type Work @default.
- W4361792267 citedByCount "0" @default.
- W4361792267 crossrefType "proceedings-article" @default.
- W4361792267 hasAuthorship W4361792267A5027114476 @default.
- W4361792267 hasAuthorship W4361792267A5040678612 @default.
- W4361792267 hasAuthorship W4361792267A5041679934 @default.
- W4361792267 hasAuthorship W4361792267A5080461908 @default.
- W4361792267 hasAuthorship W4361792267A5085552100 @default.
- W4361792267 hasConcept C108583219 @default.
- W4361792267 hasConcept C111919701 @default.
- W4361792267 hasConcept C119857082 @default.
- W4361792267 hasConcept C127413603 @default.
- W4361792267 hasConcept C138885662 @default.
- W4361792267 hasConcept C139719470 @default.
- W4361792267 hasConcept C154945302 @default.
- W4361792267 hasConcept C162324750 @default.
- W4361792267 hasConcept C177264268 @default.
- W4361792267 hasConcept C18762648 @default.
- W4361792267 hasConcept C199360897 @default.
- W4361792267 hasConcept C204983608 @default.
- W4361792267 hasConcept C21036866 @default.
- W4361792267 hasConcept C2781235140 @default.
- W4361792267 hasConcept C41008148 @default.
- W4361792267 hasConcept C41895202 @default.
- W4361792267 hasConcept C78519656 @default.
- W4361792267 hasConcept C81363708 @default.
- W4361792267 hasConceptScore W4361792267C108583219 @default.
- W4361792267 hasConceptScore W4361792267C111919701 @default.
- W4361792267 hasConceptScore W4361792267C119857082 @default.
- W4361792267 hasConceptScore W4361792267C127413603 @default.
- W4361792267 hasConceptScore W4361792267C138885662 @default.
- W4361792267 hasConceptScore W4361792267C139719470 @default.
- W4361792267 hasConceptScore W4361792267C154945302 @default.
- W4361792267 hasConceptScore W4361792267C162324750 @default.
- W4361792267 hasConceptScore W4361792267C177264268 @default.
- W4361792267 hasConceptScore W4361792267C18762648 @default.
- W4361792267 hasConceptScore W4361792267C199360897 @default.
- W4361792267 hasConceptScore W4361792267C204983608 @default.
- W4361792267 hasConceptScore W4361792267C21036866 @default.
- W4361792267 hasConceptScore W4361792267C2781235140 @default.
- W4361792267 hasConceptScore W4361792267C41008148 @default.
- W4361792267 hasConceptScore W4361792267C41895202 @default.
- W4361792267 hasConceptScore W4361792267C78519656 @default.
- W4361792267 hasConceptScore W4361792267C81363708 @default.
- W4361792267 hasFunder F4320322873 @default.
- W4361792267 hasLocation W43617922671 @default.
- W4361792267 hasOpenAccess W4361792267 @default.
- W4361792267 hasPrimaryLocation W43617922671 @default.
- W4361792267 hasRelatedWork W2337926734 @default.
- W4361792267 hasRelatedWork W2799614062 @default.
- W4361792267 hasRelatedWork W2963958939 @default.
- W4361792267 hasRelatedWork W3173182854 @default.
- W4361792267 hasRelatedWork W4311257506 @default.
- W4361792267 hasRelatedWork W4312417841 @default.
- W4361792267 hasRelatedWork W4319994054 @default.
- W4361792267 hasRelatedWork W4320802194 @default.
- W4361792267 hasRelatedWork W4321369474 @default.
- W4361792267 hasRelatedWork W4327499916 @default.
- W4361792267 isParatext "false" @default.
- W4361792267 isRetracted "false" @default.
- W4361792267 workType "article" @default.