Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361812412> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4361812412 abstract "Abstract Objective When listening to continuous speech, populations of neurons in the brain track different features of the signal. Neural tracking can be measured by relating the electroencephalography (EEG) and the speech signal. Recent studies have shown a significant contribution of linguistic features over acoustic neural tracking using linear models. However, linear models cannot model the nonlinear dynamics of the brain. To overcome this, we use a convolutional neural network (CNN) that relates EEG to linguistic features using phoneme or word onsets as a control and has the capacity to model non-linear relations. Approach We integrate phoneme- and word-based linguistic features (phoneme surprisal, cohort entropy, word surprisal and word frequency) in our nonlinear CNN model and investigate if they carry additional information on top of lexical features (phoneme and word onsets). We then compare the performance of our nonlinear CNN with that of a linear encoder and a linearized CNN. Main results For the non-linear CNN, we found a significant contribution of cohort entropy over phoneme onsets and of word surprisal and word frequency over word onsets. Moreover, the non-linear CNN outperformed the linear baselines. Significance Measuring coding of linguistic features in the brain is important for auditory neuroscience research and applications that involve objectively measuring speech understanding. With linear models, this is measurable, but the effects are very small. The proposed non-linear CNN model yields larger differences between linguistic and lexical models and, therefore, could show effects that would otherwise be unmeasurable and may, in the future, lead to improved within-subject measures and shorter recordings. Index Terms EEG decoding, speech processing, CNN, linguistics." @default.
- W4361812412 created "2023-04-05" @default.
- W4361812412 creator A5000222995 @default.
- W4361812412 creator A5000422921 @default.
- W4361812412 creator A5011655083 @default.
- W4361812412 creator A5020673840 @default.
- W4361812412 creator A5041184020 @default.
- W4361812412 creator A5087514947 @default.
- W4361812412 date "2023-03-31" @default.
- W4361812412 modified "2023-10-01" @default.
- W4361812412 title "Robust neural tracking of linguistic speech representations using a convolutional neural network." @default.
- W4361812412 cites W1934041838 @default.
- W4361812412 cites W1971400528 @default.
- W4361812412 cites W1979759871 @default.
- W4361812412 cites W2012575176 @default.
- W4361812412 cites W2034537853 @default.
- W4361812412 cites W2137172783 @default.
- W4361812412 cites W2138164020 @default.
- W4361812412 cites W2148154194 @default.
- W4361812412 cites W2158904676 @default.
- W4361812412 cites W2168700874 @default.
- W4361812412 cites W2558802391 @default.
- W4361812412 cites W2756894032 @default.
- W4361812412 cites W2771075519 @default.
- W4361812412 cites W2785774267 @default.
- W4361812412 cites W2790725051 @default.
- W4361812412 cites W2903324034 @default.
- W4361812412 cites W2913539759 @default.
- W4361812412 cites W2945038412 @default.
- W4361812412 cites W3016174996 @default.
- W4361812412 cites W3028954192 @default.
- W4361812412 cites W3038121656 @default.
- W4361812412 cites W3045601687 @default.
- W4361812412 cites W3094833027 @default.
- W4361812412 cites W3115691565 @default.
- W4361812412 cites W4224916248 @default.
- W4361812412 cites W4283015068 @default.
- W4361812412 cites W4296068586 @default.
- W4361812412 cites W4308343432 @default.
- W4361812412 cites W4384155732 @default.
- W4361812412 doi "https://doi.org/10.1101/2023.03.30.534911" @default.
- W4361812412 hasPublicationYear "2023" @default.
- W4361812412 type Work @default.
- W4361812412 citedByCount "1" @default.
- W4361812412 countsByYear W43618124122023 @default.
- W4361812412 crossrefType "posted-content" @default.
- W4361812412 hasAuthorship W4361812412A5000222995 @default.
- W4361812412 hasAuthorship W4361812412A5000422921 @default.
- W4361812412 hasAuthorship W4361812412A5011655083 @default.
- W4361812412 hasAuthorship W4361812412A5020673840 @default.
- W4361812412 hasAuthorship W4361812412A5041184020 @default.
- W4361812412 hasAuthorship W4361812412A5087514947 @default.
- W4361812412 hasBestOaLocation W43618124121 @default.
- W4361812412 hasConcept C138885662 @default.
- W4361812412 hasConcept C154945302 @default.
- W4361812412 hasConcept C204321447 @default.
- W4361812412 hasConcept C28490314 @default.
- W4361812412 hasConcept C41008148 @default.
- W4361812412 hasConcept C41895202 @default.
- W4361812412 hasConcept C81363708 @default.
- W4361812412 hasConcept C90805587 @default.
- W4361812412 hasConceptScore W4361812412C138885662 @default.
- W4361812412 hasConceptScore W4361812412C154945302 @default.
- W4361812412 hasConceptScore W4361812412C204321447 @default.
- W4361812412 hasConceptScore W4361812412C28490314 @default.
- W4361812412 hasConceptScore W4361812412C41008148 @default.
- W4361812412 hasConceptScore W4361812412C41895202 @default.
- W4361812412 hasConceptScore W4361812412C81363708 @default.
- W4361812412 hasConceptScore W4361812412C90805587 @default.
- W4361812412 hasLocation W43618124121 @default.
- W4361812412 hasOpenAccess W4361812412 @default.
- W4361812412 hasPrimaryLocation W43618124121 @default.
- W4361812412 hasRelatedWork W2285788670 @default.
- W4361812412 hasRelatedWork W2360025963 @default.
- W4361812412 hasRelatedWork W2490962171 @default.
- W4361812412 hasRelatedWork W2521062615 @default.
- W4361812412 hasRelatedWork W2748454020 @default.
- W4361812412 hasRelatedWork W2955938200 @default.
- W4361812412 hasRelatedWork W2998526951 @default.
- W4361812412 hasRelatedWork W3016958897 @default.
- W4361812412 hasRelatedWork W3119610945 @default.
- W4361812412 hasRelatedWork W3181746755 @default.
- W4361812412 isParatext "false" @default.
- W4361812412 isRetracted "false" @default.
- W4361812412 workType "article" @default.