Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361860626> ?p ?o ?g. }
- W4361860626 endingPage "235" @default.
- W4361860626 startingPage "229" @default.
- W4361860626 abstract "Recently, the Internet of Things (IoT) technology has made tremendous progress, and it is beginning to enter many areas of social life, such as autonomous driving, medical care, etc. Due to the massive data in IoT, deep neural networks (DNN) are often involved in helping process and analyzing data, but DNNs still face many security threats. Adversarial example attack is a common attack against DNN models, which interferes with model decisions through processed samples. It will undoubtedly threaten DNN-based IoT systems. This paper presents the possible attack scenarios of adversarial example attacks in IoT systems and extensively studies the defense methods of adversarial example attacks in IoT systems." @default.
- W4361860626 created "2023-04-05" @default.
- W4361860626 creator A5015275781 @default.
- W4361860626 creator A5039493947 @default.
- W4361860626 creator A5046712504 @default.
- W4361860626 creator A5079802287 @default.
- W4361860626 date "2023-01-01" @default.
- W4361860626 modified "2023-10-07" @default.
- W4361860626 title "Adversarial Example Attacks in Internet of Things (IoT)" @default.
- W4361860626 cites W2342662179 @default.
- W4361860626 cites W2543927648 @default.
- W4361860626 cites W2785446263 @default.
- W4361860626 cites W2891931318 @default.
- W4361860626 cites W2932176981 @default.
- W4361860626 cites W2959587146 @default.
- W4361860626 cites W2962939738 @default.
- W4361860626 cites W2963327228 @default.
- W4361860626 cites W2963542245 @default.
- W4361860626 cites W2965483395 @default.
- W4361860626 cites W2966317278 @default.
- W4361860626 cites W2982162079 @default.
- W4361860626 cites W2987748564 @default.
- W4361860626 cites W3006838039 @default.
- W4361860626 cites W3010943366 @default.
- W4361860626 cites W3015815227 @default.
- W4361860626 cites W3016224608 @default.
- W4361860626 cites W3035191847 @default.
- W4361860626 cites W3038859893 @default.
- W4361860626 cites W3099206234 @default.
- W4361860626 cites W3120918731 @default.
- W4361860626 cites W3130423852 @default.
- W4361860626 cites W3136774798 @default.
- W4361860626 cites W3147316867 @default.
- W4361860626 cites W3166022359 @default.
- W4361860626 cites W3190229640 @default.
- W4361860626 cites W4206766078 @default.
- W4361860626 cites W4211067533 @default.
- W4361860626 cites W4213110664 @default.
- W4361860626 cites W4226490845 @default.
- W4361860626 cites W4252979261 @default.
- W4361860626 cites W4284969151 @default.
- W4361860626 cites W4285206772 @default.
- W4361860626 cites W4285207459 @default.
- W4361860626 cites W4285253465 @default.
- W4361860626 cites W4285292458 @default.
- W4361860626 cites W4297095047 @default.
- W4361860626 doi "https://doi.org/10.1007/978-3-031-28990-3_16" @default.
- W4361860626 hasPublicationYear "2023" @default.
- W4361860626 type Work @default.
- W4361860626 citedByCount "0" @default.
- W4361860626 crossrefType "book-chapter" @default.
- W4361860626 hasAuthorship W4361860626A5015275781 @default.
- W4361860626 hasAuthorship W4361860626A5039493947 @default.
- W4361860626 hasAuthorship W4361860626A5046712504 @default.
- W4361860626 hasAuthorship W4361860626A5079802287 @default.
- W4361860626 hasConcept C108827166 @default.
- W4361860626 hasConcept C110875604 @default.
- W4361860626 hasConcept C111919701 @default.
- W4361860626 hasConcept C136764020 @default.
- W4361860626 hasConcept C144024400 @default.
- W4361860626 hasConcept C154945302 @default.
- W4361860626 hasConcept C2779304628 @default.
- W4361860626 hasConcept C2984842247 @default.
- W4361860626 hasConcept C36289849 @default.
- W4361860626 hasConcept C37736160 @default.
- W4361860626 hasConcept C38652104 @default.
- W4361860626 hasConcept C41008148 @default.
- W4361860626 hasConcept C50644808 @default.
- W4361860626 hasConcept C81860439 @default.
- W4361860626 hasConcept C98045186 @default.
- W4361860626 hasConceptScore W4361860626C108827166 @default.
- W4361860626 hasConceptScore W4361860626C110875604 @default.
- W4361860626 hasConceptScore W4361860626C111919701 @default.
- W4361860626 hasConceptScore W4361860626C136764020 @default.
- W4361860626 hasConceptScore W4361860626C144024400 @default.
- W4361860626 hasConceptScore W4361860626C154945302 @default.
- W4361860626 hasConceptScore W4361860626C2779304628 @default.
- W4361860626 hasConceptScore W4361860626C2984842247 @default.
- W4361860626 hasConceptScore W4361860626C36289849 @default.
- W4361860626 hasConceptScore W4361860626C37736160 @default.
- W4361860626 hasConceptScore W4361860626C38652104 @default.
- W4361860626 hasConceptScore W4361860626C41008148 @default.
- W4361860626 hasConceptScore W4361860626C50644808 @default.
- W4361860626 hasConceptScore W4361860626C81860439 @default.
- W4361860626 hasConceptScore W4361860626C98045186 @default.
- W4361860626 hasLocation W43618606261 @default.
- W4361860626 hasOpenAccess W4361860626 @default.
- W4361860626 hasPrimaryLocation W43618606261 @default.
- W4361860626 hasRelatedWork W2389103123 @default.
- W4361860626 hasRelatedWork W2516574342 @default.
- W4361860626 hasRelatedWork W2608118026 @default.
- W4361860626 hasRelatedWork W2621146813 @default.
- W4361860626 hasRelatedWork W2913259440 @default.
- W4361860626 hasRelatedWork W2937393784 @default.
- W4361860626 hasRelatedWork W2964581673 @default.
- W4361860626 hasRelatedWork W3103518308 @default.
- W4361860626 hasRelatedWork W3119467695 @default.
- W4361860626 hasRelatedWork W4298342760 @default.