Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361862167> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4361862167 abstract "In this paper, a general vector optimization problem with inequality constraints is considered, this topic is very popular and important model with a long research history in optimization. The generality of setting is mainly expressed in the following three factors. The underlying spaces being linear spaces without topology (except the decision space being additionally equipped with this structure in some results). The “orderings” in both objective and constraint spaces are defined by arbitrary nonempty sets (not necessarily convex cones). The problem data are nonsmooth mappings, i.e., they are not Fréchet differentiable. For this problem, the optimality conditions and Wolfe and Mond-Weir duality properties are investigated , which lie at the heart of optimization theory. These results are established for the three main and typical optimal solutions: (Pareto) minimal, weak minimal, and strong minimal solutions in both local and global considerations. The research define a type of Gateaux variation to play the role of a derivative. For optimality conditions, and introduce the concepts of on-set differentiable quasiconvexity for global solutions and sequential differentiable quasiconvexity for local ones. Furthermore, each of them is separated into type 1 for sufficient optimality conditions and type 2 for necessary ones. After obtaining optimality conditions, applying them to derive weak and strong duality relations for the above types of solutions following our duality schemes of the Wolfe and Mon-Weir types. Due to the complexity of the research subject: considerations of duality are different from that of optimality conditions, we have to design two more appropriate types of generalized quasiconvexity: scalar quasiconvexity for the weak solution and scalar strict convexity for the Pareto solution. So all the results are in terms of the aforementioned Gateaux variation and various types of generalized quasiconvexity. The results are remarkably different from the related known ones with some clear advantages in particular cases of applications." @default.
- W4361862167 created "2023-04-05" @default.
- W4361862167 creator A5031417663 @default.
- W4361862167 date "2021-01-01" @default.
- W4361862167 modified "2023-09-27" @default.
- W4361862167 title "Optimality conditions and duality with new variants of generalized derivatives and convexity" @default.
- W4361862167 doi "https://doi.org/10.32508/stdjet.v4isi2.916" @default.
- W4361862167 hasPublicationYear "2021" @default.
- W4361862167 type Work @default.
- W4361862167 citedByCount "0" @default.
- W4361862167 crossrefType "journal-article" @default.
- W4361862167 hasAuthorship W4361862167A5031417663 @default.
- W4361862167 hasBestOaLocation W43618621671 @default.
- W4361862167 hasConcept C106159729 @default.
- W4361862167 hasConcept C111919701 @default.
- W4361862167 hasConcept C122357587 @default.
- W4361862167 hasConcept C126255220 @default.
- W4361862167 hasConcept C137836250 @default.
- W4361862167 hasConcept C15744967 @default.
- W4361862167 hasConcept C162324750 @default.
- W4361862167 hasConcept C163863214 @default.
- W4361862167 hasConcept C164088818 @default.
- W4361862167 hasConcept C18903297 @default.
- W4361862167 hasConcept C202444582 @default.
- W4361862167 hasConcept C202615002 @default.
- W4361862167 hasConcept C2777299769 @default.
- W4361862167 hasConcept C2778023678 @default.
- W4361862167 hasConcept C2778572836 @default.
- W4361862167 hasConcept C2780767217 @default.
- W4361862167 hasConcept C33923547 @default.
- W4361862167 hasConcept C41008148 @default.
- W4361862167 hasConcept C5274546 @default.
- W4361862167 hasConcept C542102704 @default.
- W4361862167 hasConcept C72134830 @default.
- W4361862167 hasConcept C86803240 @default.
- W4361862167 hasConceptScore W4361862167C106159729 @default.
- W4361862167 hasConceptScore W4361862167C111919701 @default.
- W4361862167 hasConceptScore W4361862167C122357587 @default.
- W4361862167 hasConceptScore W4361862167C126255220 @default.
- W4361862167 hasConceptScore W4361862167C137836250 @default.
- W4361862167 hasConceptScore W4361862167C15744967 @default.
- W4361862167 hasConceptScore W4361862167C162324750 @default.
- W4361862167 hasConceptScore W4361862167C163863214 @default.
- W4361862167 hasConceptScore W4361862167C164088818 @default.
- W4361862167 hasConceptScore W4361862167C18903297 @default.
- W4361862167 hasConceptScore W4361862167C202444582 @default.
- W4361862167 hasConceptScore W4361862167C202615002 @default.
- W4361862167 hasConceptScore W4361862167C2777299769 @default.
- W4361862167 hasConceptScore W4361862167C2778023678 @default.
- W4361862167 hasConceptScore W4361862167C2778572836 @default.
- W4361862167 hasConceptScore W4361862167C2780767217 @default.
- W4361862167 hasConceptScore W4361862167C33923547 @default.
- W4361862167 hasConceptScore W4361862167C41008148 @default.
- W4361862167 hasConceptScore W4361862167C5274546 @default.
- W4361862167 hasConceptScore W4361862167C542102704 @default.
- W4361862167 hasConceptScore W4361862167C72134830 @default.
- W4361862167 hasConceptScore W4361862167C86803240 @default.
- W4361862167 hasLocation W43618621671 @default.
- W4361862167 hasOpenAccess W4361862167 @default.
- W4361862167 hasPrimaryLocation W43618621671 @default.
- W4361862167 hasRelatedWork W1583363919 @default.
- W4361862167 hasRelatedWork W1978649511 @default.
- W4361862167 hasRelatedWork W2013319179 @default.
- W4361862167 hasRelatedWork W2049215009 @default.
- W4361862167 hasRelatedWork W2241982889 @default.
- W4361862167 hasRelatedWork W2519215360 @default.
- W4361862167 hasRelatedWork W2621152256 @default.
- W4361862167 hasRelatedWork W3198445328 @default.
- W4361862167 hasRelatedWork W4307261727 @default.
- W4361862167 hasRelatedWork W4313014939 @default.
- W4361862167 isParatext "false" @default.
- W4361862167 isRetracted "false" @default.
- W4361862167 workType "article" @default.