Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361957788> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4361957788 abstract "<div>AbstractPurpose:<p>Histopathology evaluation is the gold standard for diagnosing clear cell (ccRCC), papillary, and chromophobe renal cell carcinoma (RCC). However, interrater variability has been reported, and the whole-slide histopathology images likely contain underutilized biological signals predictive of genomic profiles.</p>Experimental Design:<p>To address this knowledge gap, we obtained whole-slide histopathology images and demographic, genomic, and clinical data from The Cancer Genome Atlas, the Clinical Proteomic Tumor Analysis Consortium, and Brigham and Women's Hospital (Boston, MA) to develop computational methods for integrating data analyses. Leveraging these large and diverse datasets, we developed fully automated convolutional neural networks to diagnose renal cancers and connect quantitative pathology patterns with patients' genomic profiles and prognoses.</p>Results:<p>Our deep convolutional neural networks successfully detected malignancy (AUC in the independent validation cohort: 0.964–0.985), diagnosed RCC histologic subtypes (independent validation AUCs of the best models: 0.953–0.993), and predicted stage I ccRCC patients' survival outcomes (log-rank test <i>P</i> = 0.02). Our machine learning approaches further identified histopathology image features indicative of copy-number alterations (AUC > 0.7 in multiple genes in patients with ccRCC) and tumor mutation burden.</p>Conclusions:<p>Our results suggest that convolutional neural networks can extract histologic signals predictive of patients' diagnoses, prognoses, and genomic variations of clinical importance. Our approaches can systematically identify previously unknown relations among diverse data modalities.</p></div>" @default.
- W4361957788 created "2023-04-05" @default.
- W4361957788 creator A5009572751 @default.
- W4361957788 creator A5015128765 @default.
- W4361957788 creator A5025893013 @default.
- W4361957788 creator A5030529105 @default.
- W4361957788 creator A5046795494 @default.
- W4361957788 creator A5061562703 @default.
- W4361957788 creator A5088509061 @default.
- W4361957788 date "2023-03-31" @default.
- W4361957788 modified "2023-09-26" @default.
- W4361957788 title "Data from Development of a Histopathology Informatics Pipeline for Classification and Prediction of Clinical Outcomes in Subtypes of Renal Cell Carcinoma" @default.
- W4361957788 doi "https://doi.org/10.1158/1078-0432.c.6529905.v1" @default.
- W4361957788 hasPublicationYear "2023" @default.
- W4361957788 type Work @default.
- W4361957788 citedByCount "0" @default.
- W4361957788 crossrefType "posted-content" @default.
- W4361957788 hasAuthorship W4361957788A5009572751 @default.
- W4361957788 hasAuthorship W4361957788A5015128765 @default.
- W4361957788 hasAuthorship W4361957788A5025893013 @default.
- W4361957788 hasAuthorship W4361957788A5030529105 @default.
- W4361957788 hasAuthorship W4361957788A5046795494 @default.
- W4361957788 hasAuthorship W4361957788A5061562703 @default.
- W4361957788 hasAuthorship W4361957788A5088509061 @default.
- W4361957788 hasBestOaLocation W43619577882 @default.
- W4361957788 hasConcept C126322002 @default.
- W4361957788 hasConcept C142724271 @default.
- W4361957788 hasConcept C143998085 @default.
- W4361957788 hasConcept C154945302 @default.
- W4361957788 hasConcept C2777472916 @default.
- W4361957788 hasConcept C2779399171 @default.
- W4361957788 hasConcept C2781278892 @default.
- W4361957788 hasConcept C40993552 @default.
- W4361957788 hasConcept C41008148 @default.
- W4361957788 hasConcept C544855455 @default.
- W4361957788 hasConcept C71924100 @default.
- W4361957788 hasConcept C81363708 @default.
- W4361957788 hasConceptScore W4361957788C126322002 @default.
- W4361957788 hasConceptScore W4361957788C142724271 @default.
- W4361957788 hasConceptScore W4361957788C143998085 @default.
- W4361957788 hasConceptScore W4361957788C154945302 @default.
- W4361957788 hasConceptScore W4361957788C2777472916 @default.
- W4361957788 hasConceptScore W4361957788C2779399171 @default.
- W4361957788 hasConceptScore W4361957788C2781278892 @default.
- W4361957788 hasConceptScore W4361957788C40993552 @default.
- W4361957788 hasConceptScore W4361957788C41008148 @default.
- W4361957788 hasConceptScore W4361957788C544855455 @default.
- W4361957788 hasConceptScore W4361957788C71924100 @default.
- W4361957788 hasConceptScore W4361957788C81363708 @default.
- W4361957788 hasLocation W43619577881 @default.
- W4361957788 hasLocation W43619577882 @default.
- W4361957788 hasOpenAccess W4361957788 @default.
- W4361957788 hasPrimaryLocation W43619577881 @default.
- W4361957788 hasRelatedWork W2056391664 @default.
- W4361957788 hasRelatedWork W2755480982 @default.
- W4361957788 hasRelatedWork W2902149592 @default.
- W4361957788 hasRelatedWork W2946532962 @default.
- W4361957788 hasRelatedWork W3027818897 @default.
- W4361957788 hasRelatedWork W3197521817 @default.
- W4361957788 hasRelatedWork W4292111241 @default.
- W4361957788 hasRelatedWork W4307984913 @default.
- W4361957788 hasRelatedWork W4308010588 @default.
- W4361957788 hasRelatedWork W4323357094 @default.
- W4361957788 isParatext "false" @default.
- W4361957788 isRetracted "false" @default.
- W4361957788 workType "article" @default.