Matches in SemOpenAlex for { <https://semopenalex.org/work/W4361985019> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4361985019 endingPage "974" @default.
- W4361985019 startingPage "961" @default.
- W4361985019 abstract "Under the situation of severe COVID-19 epidemic, lung ultrasound (LUS) has been proved to be an effective and convenient method to diagnose and evaluate the extent of respiratory disease. However, the traditional clinical ultrasound (US) scanning requires doctors not only to be in close contact with patients but also to have rich experience. In order to alleviate the shortage of medical resources and reduce the work stress and risk of infection for doctors, we propose a visual perception and convolutional neural network (CNN)-based robotic autonomous LUS scanning localization system to realize scanned target recognition, probe pose solution and movement, and the acquisition of US images. The LUS scanned targets are identified through the target segmentation and localization algorithm based on the improved CNN, which is using the depth camera to collect the image information; furthermore, the method based on multiscale compensation normal vector is used to solve the attitude of the probe; finally, a position control strategy based on force feedback is designed to optimize the position and attitude of the probe, which can not only obtain high-quality US images but also ensure the safety of patients and the system. The results of human LUS scanning experiment verify the accuracy and feasibility of the system. The positioning accuracy of the scanned targets is 15.63 ± 0.18 mm, and the distance accuracy and rotation angle accuracy of the probe position calculation are 6.38 ± 0.25 mm and 8.60° ±2.29° , respectively. More importantly, the obtained high-quality US images can clearly capture the main pathological features of the lung. The system is expected to be applied in clinical practice." @default.
- W4361985019 created "2023-04-05" @default.
- W4361985019 creator A5009123701 @default.
- W4361985019 creator A5009129294 @default.
- W4361985019 creator A5023775721 @default.
- W4361985019 creator A5027860856 @default.
- W4361985019 date "2023-09-01" @default.
- W4361985019 modified "2023-10-02" @default.
- W4361985019 title "Visual Perception and Convolutional Neural Network Based Robotic Autonomous Lung Ultrasound Scanning Localization System" @default.
- W4361985019 cites W1988346369 @default.
- W4361985019 cites W1991886212 @default.
- W4361985019 cites W2040921290 @default.
- W4361985019 cites W2068959882 @default.
- W4361985019 cites W2152474505 @default.
- W4361985019 cites W2412329746 @default.
- W4361985019 cites W2752782242 @default.
- W4361985019 cites W2893379190 @default.
- W4361985019 cites W3006097963 @default.
- W4361985019 cites W3006419733 @default.
- W4361985019 cites W3010354468 @default.
- W4361985019 cites W3010848803 @default.
- W4361985019 cites W3015453652 @default.
- W4361985019 cites W3016185001 @default.
- W4361985019 cites W3025800305 @default.
- W4361985019 cites W3041954275 @default.
- W4361985019 cites W3045079108 @default.
- W4361985019 cites W3046280637 @default.
- W4361985019 cites W3082132120 @default.
- W4361985019 cites W3082359035 @default.
- W4361985019 cites W3093687097 @default.
- W4361985019 cites W3120979719 @default.
- W4361985019 cites W3158399400 @default.
- W4361985019 cites W3165097438 @default.
- W4361985019 cites W3185513125 @default.
- W4361985019 cites W3207080935 @default.
- W4361985019 cites W4200470402 @default.
- W4361985019 cites W4211115048 @default.
- W4361985019 cites W4221007310 @default.
- W4361985019 doi "https://doi.org/10.1109/tuffc.2023.3263514" @default.
- W4361985019 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37015119" @default.
- W4361985019 hasPublicationYear "2023" @default.
- W4361985019 type Work @default.
- W4361985019 citedByCount "0" @default.
- W4361985019 crossrefType "journal-article" @default.
- W4361985019 hasAuthorship W4361985019A5009123701 @default.
- W4361985019 hasAuthorship W4361985019A5009129294 @default.
- W4361985019 hasAuthorship W4361985019A5023775721 @default.
- W4361985019 hasAuthorship W4361985019A5027860856 @default.
- W4361985019 hasConcept C10138342 @default.
- W4361985019 hasConcept C153180895 @default.
- W4361985019 hasConcept C154945302 @default.
- W4361985019 hasConcept C162324750 @default.
- W4361985019 hasConcept C198082294 @default.
- W4361985019 hasConcept C31972630 @default.
- W4361985019 hasConcept C41008148 @default.
- W4361985019 hasConcept C81363708 @default.
- W4361985019 hasConceptScore W4361985019C10138342 @default.
- W4361985019 hasConceptScore W4361985019C153180895 @default.
- W4361985019 hasConceptScore W4361985019C154945302 @default.
- W4361985019 hasConceptScore W4361985019C162324750 @default.
- W4361985019 hasConceptScore W4361985019C198082294 @default.
- W4361985019 hasConceptScore W4361985019C31972630 @default.
- W4361985019 hasConceptScore W4361985019C41008148 @default.
- W4361985019 hasConceptScore W4361985019C81363708 @default.
- W4361985019 hasFunder F4320321001 @default.
- W4361985019 hasIssue "9" @default.
- W4361985019 hasLocation W43619850191 @default.
- W4361985019 hasLocation W43619850192 @default.
- W4361985019 hasOpenAccess W4361985019 @default.
- W4361985019 hasPrimaryLocation W43619850191 @default.
- W4361985019 hasRelatedWork W1581382664 @default.
- W4361985019 hasRelatedWork W1865242774 @default.
- W4361985019 hasRelatedWork W1891287906 @default.
- W4361985019 hasRelatedWork W2360764675 @default.
- W4361985019 hasRelatedWork W2748454020 @default.
- W4361985019 hasRelatedWork W2767651786 @default.
- W4361985019 hasRelatedWork W2912288872 @default.
- W4361985019 hasRelatedWork W43236265 @default.
- W4361985019 hasRelatedWork W564581980 @default.
- W4361985019 hasRelatedWork W78974484 @default.
- W4361985019 hasVolume "70" @default.
- W4361985019 isParatext "false" @default.
- W4361985019 isRetracted "false" @default.
- W4361985019 workType "article" @default.