Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362002247> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4362002247 endingPage "2888" @default.
- W4362002247 startingPage "2873" @default.
- W4362002247 abstract "Aspect-Based Sentiment Analysis (ABSA) is one of the essential research in the field of Natural Language Processing (NLP), of which Aspect Sentiment Quad Prediction (ASQP) is a novel and complete subtask. ASQP aims to accurately recognize the sentiment quad in the target sentence, which includes the aspect term, the aspect category, the corresponding opinion term, and the sentiment polarity of opinion. Nevertheless, existing approaches lack knowledge of the sentence’s syntax, so despite recent innovations in ASQP, it is poor for complex cyber comment processing. Also, most research has focused on processing English text, and ASQP for Chinese text is almost non-existent. Chinese usage is more casual than English, and individual characters contain more information. We propose a novel syntactically enhanced neural network framework inspired by syntax knowledge enhancement strategies in other NLP studies. In this framework, part of speech (POS) and dependency trees are input to the model as auxiliary information to strengthen its cognition of Chinese text structure. Besides, we design a relation extraction module, which provides a bridge for the overall extraction of the framework. A comparison of the designed experiments reveals that our proposed strategy outperforms the previous studies on the key metric F1. Further experiments demonstrate that the auxiliary information added to the framework improves the final performance in different ways." @default.
- W4362002247 created "2023-04-05" @default.
- W4362002247 creator A5007312066 @default.
- W4362002247 creator A5025315990 @default.
- W4362002247 creator A5058426841 @default.
- W4362002247 creator A5063364945 @default.
- W4362002247 creator A5067176684 @default.
- W4362002247 date "2023-01-01" @default.
- W4362002247 modified "2023-10-18" @default.
- W4362002247 title "Syntax-Based Aspect Sentiment Quad Prediction by Dual Modules Neural Network for Chinese Comments" @default.
- W4362002247 doi "https://doi.org/10.32604/cmc.2023.037060" @default.
- W4362002247 hasPublicationYear "2023" @default.
- W4362002247 type Work @default.
- W4362002247 citedByCount "0" @default.
- W4362002247 crossrefType "journal-article" @default.
- W4362002247 hasAuthorship W4362002247A5007312066 @default.
- W4362002247 hasAuthorship W4362002247A5025315990 @default.
- W4362002247 hasAuthorship W4362002247A5058426841 @default.
- W4362002247 hasAuthorship W4362002247A5063364945 @default.
- W4362002247 hasAuthorship W4362002247A5067176684 @default.
- W4362002247 hasBestOaLocation W43620022471 @default.
- W4362002247 hasConcept C124101348 @default.
- W4362002247 hasConcept C138885662 @default.
- W4362002247 hasConcept C154945302 @default.
- W4362002247 hasConcept C204321447 @default.
- W4362002247 hasConcept C25343380 @default.
- W4362002247 hasConcept C2777530160 @default.
- W4362002247 hasConcept C2780980858 @default.
- W4362002247 hasConcept C41008148 @default.
- W4362002247 hasConcept C41895202 @default.
- W4362002247 hasConcept C50644808 @default.
- W4362002247 hasConcept C60048249 @default.
- W4362002247 hasConcept C66402592 @default.
- W4362002247 hasConceptScore W4362002247C124101348 @default.
- W4362002247 hasConceptScore W4362002247C138885662 @default.
- W4362002247 hasConceptScore W4362002247C154945302 @default.
- W4362002247 hasConceptScore W4362002247C204321447 @default.
- W4362002247 hasConceptScore W4362002247C25343380 @default.
- W4362002247 hasConceptScore W4362002247C2777530160 @default.
- W4362002247 hasConceptScore W4362002247C2780980858 @default.
- W4362002247 hasConceptScore W4362002247C41008148 @default.
- W4362002247 hasConceptScore W4362002247C41895202 @default.
- W4362002247 hasConceptScore W4362002247C50644808 @default.
- W4362002247 hasConceptScore W4362002247C60048249 @default.
- W4362002247 hasConceptScore W4362002247C66402592 @default.
- W4362002247 hasIssue "2" @default.
- W4362002247 hasLocation W43620022471 @default.
- W4362002247 hasOpenAccess W4362002247 @default.
- W4362002247 hasPrimaryLocation W43620022471 @default.
- W4362002247 hasRelatedWork W1567338489 @default.
- W4362002247 hasRelatedWork W1835566166 @default.
- W4362002247 hasRelatedWork W1978971213 @default.
- W4362002247 hasRelatedWork W2375211870 @default.
- W4362002247 hasRelatedWork W2391472853 @default.
- W4362002247 hasRelatedWork W2800016038 @default.
- W4362002247 hasRelatedWork W3107474891 @default.
- W4362002247 hasRelatedWork W3209984204 @default.
- W4362002247 hasRelatedWork W4228997825 @default.
- W4362002247 hasRelatedWork W4312537596 @default.
- W4362002247 hasVolume "75" @default.
- W4362002247 isParatext "false" @default.
- W4362002247 isRetracted "false" @default.
- W4362002247 workType "article" @default.