Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362014744> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4362014744 abstract "One of the biggest unsolved problems in condensed matter physics is what mechanism causes high-temperature superconductivity and if there is a material that can exhibit superconductivity at both room temperature and atmospheric pressure. Among the many important properties of a superconductor, the critical temperature (Tc) or transition temperature is the point at which a material transitions into a superconductive state. In this implementation, machine learning is used to predict the critical temperatures of chemically unique compounds in an attempt to identify new chemically novel, high-temperature superconductors. The training data set (SuperCon) consists of known superconductors and their critical temperatures, and the testing data set (NOMAD) consists of around 700,000 novel chemical formulae. The chemical formulae in these data sets are first passed through a collection of rapid screening tools, SMACT, to check for chemical validity. Next, the DiSCoVeR algorithm is used to train on the SuperCon data to form a model, and then screens through batches of the formulae in the NOMAD data set. Having a combination of a chemical distance metric, density-aware dimensionality reduction, clustering, and a regression model, the DiSCoVeR algorithm serves as a tool to identify and assess these superconducting compositions [1]. This research and implementation resulted in the screening of chemically novel compositions exhibiting critical temperatures upwards of 150 K, which correlates to superconductors in the cuprate class. This implementation demonstrates a process of performing machine learning-assisted superconductor screening (while exploring chemically distinct spaces) which can be utilized in the materials discovery process." @default.
- W4362014744 created "2023-04-05" @default.
- W4362014744 creator A5003301534 @default.
- W4362014744 creator A5023224362 @default.
- W4362014744 creator A5054163917 @default.
- W4362014744 creator A5066573651 @default.
- W4362014744 date "2023-03-31" @default.
- W4362014744 modified "2023-09-25" @default.
- W4362014744 title "Discovering Chemically Novel, High-Temperature Superconductors" @default.
- W4362014744 doi "https://doi.org/10.26434/chemrxiv-2023-8t8kt-v2" @default.
- W4362014744 hasPublicationYear "2023" @default.
- W4362014744 type Work @default.
- W4362014744 citedByCount "0" @default.
- W4362014744 crossrefType "posted-content" @default.
- W4362014744 hasAuthorship W4362014744A5003301534 @default.
- W4362014744 hasAuthorship W4362014744A5023224362 @default.
- W4362014744 hasAuthorship W4362014744A5054163917 @default.
- W4362014744 hasAuthorship W4362014744A5066573651 @default.
- W4362014744 hasBestOaLocation W43620147441 @default.
- W4362014744 hasConcept C109613756 @default.
- W4362014744 hasConcept C111030470 @default.
- W4362014744 hasConcept C119857082 @default.
- W4362014744 hasConcept C121332964 @default.
- W4362014744 hasConcept C130893637 @default.
- W4362014744 hasConcept C177264268 @default.
- W4362014744 hasConcept C185592680 @default.
- W4362014744 hasConcept C192562407 @default.
- W4362014744 hasConcept C199360897 @default.
- W4362014744 hasConcept C26873012 @default.
- W4362014744 hasConcept C41008148 @default.
- W4362014744 hasConcept C54101563 @default.
- W4362014744 hasConcept C55493867 @default.
- W4362014744 hasConcept C73555534 @default.
- W4362014744 hasConcept C74187038 @default.
- W4362014744 hasConcept C99726746 @default.
- W4362014744 hasConceptScore W4362014744C109613756 @default.
- W4362014744 hasConceptScore W4362014744C111030470 @default.
- W4362014744 hasConceptScore W4362014744C119857082 @default.
- W4362014744 hasConceptScore W4362014744C121332964 @default.
- W4362014744 hasConceptScore W4362014744C130893637 @default.
- W4362014744 hasConceptScore W4362014744C177264268 @default.
- W4362014744 hasConceptScore W4362014744C185592680 @default.
- W4362014744 hasConceptScore W4362014744C192562407 @default.
- W4362014744 hasConceptScore W4362014744C199360897 @default.
- W4362014744 hasConceptScore W4362014744C26873012 @default.
- W4362014744 hasConceptScore W4362014744C41008148 @default.
- W4362014744 hasConceptScore W4362014744C54101563 @default.
- W4362014744 hasConceptScore W4362014744C55493867 @default.
- W4362014744 hasConceptScore W4362014744C73555534 @default.
- W4362014744 hasConceptScore W4362014744C74187038 @default.
- W4362014744 hasConceptScore W4362014744C99726746 @default.
- W4362014744 hasFunder F4320306076 @default.
- W4362014744 hasLocation W43620147441 @default.
- W4362014744 hasOpenAccess W4362014744 @default.
- W4362014744 hasPrimaryLocation W43620147441 @default.
- W4362014744 hasRelatedWork W1507880180 @default.
- W4362014744 hasRelatedWork W1522856007 @default.
- W4362014744 hasRelatedWork W1972626634 @default.
- W4362014744 hasRelatedWork W2010429775 @default.
- W4362014744 hasRelatedWork W2039184953 @default.
- W4362014744 hasRelatedWork W2088157506 @default.
- W4362014744 hasRelatedWork W2108292829 @default.
- W4362014744 hasRelatedWork W2160927332 @default.
- W4362014744 hasRelatedWork W2972585033 @default.
- W4362014744 hasRelatedWork W4297364450 @default.
- W4362014744 isParatext "false" @default.
- W4362014744 isRetracted "false" @default.
- W4362014744 workType "article" @default.