Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362236767> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4362236767 endingPage "999" @default.
- W4362236767 startingPage "991" @default.
- W4362236767 abstract "Abstract The techniques of exploratory data analysis include a resistant rule for identifying possible outliers in univariate data. Using the lower and upper fourths, FL and FU (approximate quartiles), it labels as “outside” any observations below FL − 1.5(FU — FL ) or above FU + 1.5(FU — FL ). For example, in the ordered sample −5, −2, 0, 1, 8, FL = −2 and FU = 1, so any observation below −6.5 or above 5.5 is outside. Thus the rule labels 8 as outside. Some related rules also use cutoffs of the form FL — k(FU — FL ) and FU + k(FU — FL ). This approach avoids the need to specify the number of possible outliers in advance; as long as they are not too numerous, any outliers do not affect the location of the cutoffs. To describe the performance of these rules, we define the some-outside rate per sample as the probability that a sample will contain one or more outside observations. Its complement is the all-inside rate per sample. We also define the outside rate per observation as the average fraction of outside observations. For Gaussian data the population all-inside rate per sample (0) and the population outside rate per observation (.7%) substantially understate the corresponding small-sample values. Simulation studies using Gaussian samples with n between 5 and 300 yield detailed information on the resistant rules. The main resistant rule (k = 1.5) has an all-inside rate per sample between 67% and 86% for 5 ≤n ≤ 20, and corresponding estimates of its outside rate per observation range from 8.6% to 1.7%. Both characteristics vary with n in ways that lead to good empirical approximations. Because of the way in which the fourths are defined, the sample sizes separate into four classes, according to whether dividing n by 4 leaves a remainder of 0, 1, 2, or 3. Within these four classes the all-inside rate per sample shows a roughly linear decrease with n over the range 9 ≤ n ≤ 50, and the outside rate per observation decreases linearly in 1/n for n ≥ 9. A more theoretical approximation for the all-inside rate per sample works with the order statistics X (1) ≤ … ≤ X (n). In this notation the fourths are X(f) and X (n + 1 — f) with f = ½[(n + 3)/2], where [·] is the greatest-integer function. A sample has no observations outside whenever {X(f)−X(1)}/{X(n+1-f)−X(f)}≤k and {X(n)−X(n+1-f)}/{X(n+1-f)−X(f)}≤k. We first approximate the numerators and denominator in these ratios by constant multiples of chi-squared random variables with the same mean and variance. We then approximate the logarithm of each ratio by a Gaussian random variable, and we calculate the correlation between these variables from the fact that the ratios have the same denominator. Finally, a bivariate Gaussian probability calculation yields the approximate all-inside rate per sample. The error of the result relative to the simulation estimate is typically from 1% to 2% for 5 ≤ n ≤ 50. To provide an indication of how the two rates behave in alternative “null” situations, the simulation studies included samples from five heavier-tailed members of the family of h distributions. For a given sample size, the all-inside rate per sample decreases as the tails become heavier, and the outside rate per observation increases." @default.
- W4362236767 created "2023-04-05" @default.
- W4362236767 creator A5023706141 @default.
- W4362236767 creator A5045044684 @default.
- W4362236767 creator A5084106675 @default.
- W4362236767 date "1986-12-01" @default.
- W4362236767 modified "2023-10-18" @default.
- W4362236767 title "Performance of Some Resistant Rules for Outlier Labeling" @default.
- W4362236767 cites W169697680 @default.
- W4362236767 cites W2044403232 @default.
- W4362236767 cites W2049058890 @default.
- W4362236767 cites W2053158115 @default.
- W4362236767 cites W2072702059 @default.
- W4362236767 cites W2126843316 @default.
- W4362236767 cites W2132886090 @default.
- W4362236767 cites W2341694529 @default.
- W4362236767 cites W2797998707 @default.
- W4362236767 cites W2798196259 @default.
- W4362236767 cites W2802420499 @default.
- W4362236767 cites W4231450888 @default.
- W4362236767 doi "https://doi.org/10.1080/01621459.1986.10478363" @default.
- W4362236767 hasPublicationYear "1986" @default.
- W4362236767 type Work @default.
- W4362236767 citedByCount "418" @default.
- W4362236767 countsByYear W43622367672012 @default.
- W4362236767 countsByYear W43622367672013 @default.
- W4362236767 countsByYear W43622367672014 @default.
- W4362236767 countsByYear W43622367672015 @default.
- W4362236767 countsByYear W43622367672016 @default.
- W4362236767 countsByYear W43622367672017 @default.
- W4362236767 countsByYear W43622367672018 @default.
- W4362236767 countsByYear W43622367672019 @default.
- W4362236767 countsByYear W43622367672020 @default.
- W4362236767 countsByYear W43622367672021 @default.
- W4362236767 countsByYear W43622367672022 @default.
- W4362236767 countsByYear W43622367672023 @default.
- W4362236767 crossrefType "journal-article" @default.
- W4362236767 hasAuthorship W4362236767A5023706141 @default.
- W4362236767 hasAuthorship W4362236767A5045044684 @default.
- W4362236767 hasAuthorship W4362236767A5084106675 @default.
- W4362236767 hasConcept C105795698 @default.
- W4362236767 hasConcept C129848803 @default.
- W4362236767 hasConcept C144024400 @default.
- W4362236767 hasConcept C149629883 @default.
- W4362236767 hasConcept C149782125 @default.
- W4362236767 hasConcept C149923435 @default.
- W4362236767 hasConcept C161584116 @default.
- W4362236767 hasConcept C178790620 @default.
- W4362236767 hasConcept C185592680 @default.
- W4362236767 hasConcept C198531522 @default.
- W4362236767 hasConcept C199163554 @default.
- W4362236767 hasConcept C2908647359 @default.
- W4362236767 hasConcept C33923547 @default.
- W4362236767 hasConcept C43617362 @default.
- W4362236767 hasConcept C44249647 @default.
- W4362236767 hasConcept C68443243 @default.
- W4362236767 hasConcept C79337645 @default.
- W4362236767 hasConceptScore W4362236767C105795698 @default.
- W4362236767 hasConceptScore W4362236767C129848803 @default.
- W4362236767 hasConceptScore W4362236767C144024400 @default.
- W4362236767 hasConceptScore W4362236767C149629883 @default.
- W4362236767 hasConceptScore W4362236767C149782125 @default.
- W4362236767 hasConceptScore W4362236767C149923435 @default.
- W4362236767 hasConceptScore W4362236767C161584116 @default.
- W4362236767 hasConceptScore W4362236767C178790620 @default.
- W4362236767 hasConceptScore W4362236767C185592680 @default.
- W4362236767 hasConceptScore W4362236767C198531522 @default.
- W4362236767 hasConceptScore W4362236767C199163554 @default.
- W4362236767 hasConceptScore W4362236767C2908647359 @default.
- W4362236767 hasConceptScore W4362236767C33923547 @default.
- W4362236767 hasConceptScore W4362236767C43617362 @default.
- W4362236767 hasConceptScore W4362236767C44249647 @default.
- W4362236767 hasConceptScore W4362236767C68443243 @default.
- W4362236767 hasConceptScore W4362236767C79337645 @default.
- W4362236767 hasIssue "396" @default.
- W4362236767 hasLocation W43622367671 @default.
- W4362236767 hasOpenAccess W4362236767 @default.
- W4362236767 hasPrimaryLocation W43622367671 @default.
- W4362236767 hasRelatedWork W1771779360 @default.
- W4362236767 hasRelatedWork W2005744356 @default.
- W4362236767 hasRelatedWork W2051800749 @default.
- W4362236767 hasRelatedWork W2066888340 @default.
- W4362236767 hasRelatedWork W2068763361 @default.
- W4362236767 hasRelatedWork W2172032168 @default.
- W4362236767 hasRelatedWork W2290081135 @default.
- W4362236767 hasRelatedWork W2922240306 @default.
- W4362236767 hasRelatedWork W3022782703 @default.
- W4362236767 hasRelatedWork W871906761 @default.
- W4362236767 hasVolume "81" @default.
- W4362236767 isParatext "false" @default.
- W4362236767 isRetracted "false" @default.
- W4362236767 workType "article" @default.