Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362451365> ?p ?o ?g. }
- W4362451365 endingPage "109341" @default.
- W4362451365 startingPage "109341" @default.
- W4362451365 abstract "Underwater target boundary segmentation is integral to forward-looking sonar image processing. However, small target boundary segmentation is always challenging due to the low resolution, low signal-to-noise ratio, and inhomogeneity of intensity of forward-looking sonar images. This paper proposes an improved level set segmentation method to accurately obtain the contour of small targets in the forward-looking sonar images: morphological reconstruction combined with the level set method (MRLSM). Compared with the classical level set and the level set method combined with the morphological method, MRLSM improves the accuracy and stability for forward-looking sonar image segmentation. Furthermore, the fuzzy C-means, Markov random field, and MRLSM are applied to the numerical simulations and experimental data for comparison. The deep learning methods are also used to compare the performances. The results demonstrated that the proposed method is more accurate, robust, and considerable for underwater small target boundary segmentation." @default.
- W4362451365 created "2023-04-05" @default.
- W4362451365 creator A5008917725 @default.
- W4362451365 creator A5028106944 @default.
- W4362451365 creator A5042785211 @default.
- W4362451365 creator A5062190927 @default.
- W4362451365 creator A5070981491 @default.
- W4362451365 creator A5088159994 @default.
- W4362451365 date "2023-05-01" @default.
- W4362451365 modified "2023-10-17" @default.
- W4362451365 title "An underwater small target boundary segmentation method in forward-looking sonar images" @default.
- W4362451365 cites W1672388334 @default.
- W4362451365 cites W1979393293 @default.
- W4362451365 cites W1982010659 @default.
- W4362451365 cites W1989135034 @default.
- W4362451365 cites W2104095591 @default.
- W4362451365 cites W2116040950 @default.
- W4362451365 cites W2119261592 @default.
- W4362451365 cites W2139478903 @default.
- W4362451365 cites W2157840858 @default.
- W4362451365 cites W2344446275 @default.
- W4362451365 cites W2473977840 @default.
- W4362451365 cites W2763699499 @default.
- W4362451365 cites W2799933346 @default.
- W4362451365 cites W2804512436 @default.
- W4362451365 cites W2907352405 @default.
- W4362451365 cites W2943210864 @default.
- W4362451365 cites W2962766617 @default.
- W4362451365 cites W3008819813 @default.
- W4362451365 cites W3039709715 @default.
- W4362451365 cites W3102894800 @default.
- W4362451365 cites W3163594517 @default.
- W4362451365 cites W3195424217 @default.
- W4362451365 cites W4285108857 @default.
- W4362451365 doi "https://doi.org/10.1016/j.apacoust.2023.109341" @default.
- W4362451365 hasPublicationYear "2023" @default.
- W4362451365 type Work @default.
- W4362451365 citedByCount "0" @default.
- W4362451365 crossrefType "journal-article" @default.
- W4362451365 hasAuthorship W4362451365A5008917725 @default.
- W4362451365 hasAuthorship W4362451365A5028106944 @default.
- W4362451365 hasAuthorship W4362451365A5042785211 @default.
- W4362451365 hasAuthorship W4362451365A5062190927 @default.
- W4362451365 hasAuthorship W4362451365A5070981491 @default.
- W4362451365 hasAuthorship W4362451365A5088159994 @default.
- W4362451365 hasConcept C111368507 @default.
- W4362451365 hasConcept C115961682 @default.
- W4362451365 hasConcept C124504099 @default.
- W4362451365 hasConcept C125269122 @default.
- W4362451365 hasConcept C127313418 @default.
- W4362451365 hasConcept C134306372 @default.
- W4362451365 hasConcept C153008295 @default.
- W4362451365 hasConcept C153180895 @default.
- W4362451365 hasConcept C154945302 @default.
- W4362451365 hasConcept C181255713 @default.
- W4362451365 hasConcept C31972630 @default.
- W4362451365 hasConcept C33923547 @default.
- W4362451365 hasConcept C41008148 @default.
- W4362451365 hasConcept C555745239 @default.
- W4362451365 hasConcept C58166 @default.
- W4362451365 hasConcept C62354387 @default.
- W4362451365 hasConcept C89600930 @default.
- W4362451365 hasConcept C98083399 @default.
- W4362451365 hasConcept C99498987 @default.
- W4362451365 hasConceptScore W4362451365C111368507 @default.
- W4362451365 hasConceptScore W4362451365C115961682 @default.
- W4362451365 hasConceptScore W4362451365C124504099 @default.
- W4362451365 hasConceptScore W4362451365C125269122 @default.
- W4362451365 hasConceptScore W4362451365C127313418 @default.
- W4362451365 hasConceptScore W4362451365C134306372 @default.
- W4362451365 hasConceptScore W4362451365C153008295 @default.
- W4362451365 hasConceptScore W4362451365C153180895 @default.
- W4362451365 hasConceptScore W4362451365C154945302 @default.
- W4362451365 hasConceptScore W4362451365C181255713 @default.
- W4362451365 hasConceptScore W4362451365C31972630 @default.
- W4362451365 hasConceptScore W4362451365C33923547 @default.
- W4362451365 hasConceptScore W4362451365C41008148 @default.
- W4362451365 hasConceptScore W4362451365C555745239 @default.
- W4362451365 hasConceptScore W4362451365C58166 @default.
- W4362451365 hasConceptScore W4362451365C62354387 @default.
- W4362451365 hasConceptScore W4362451365C89600930 @default.
- W4362451365 hasConceptScore W4362451365C98083399 @default.
- W4362451365 hasConceptScore W4362451365C99498987 @default.
- W4362451365 hasFunder F4320321001 @default.
- W4362451365 hasFunder F4320322866 @default.
- W4362451365 hasFunder F4320335777 @default.
- W4362451365 hasLocation W43624513651 @default.
- W4362451365 hasOpenAccess W4362451365 @default.
- W4362451365 hasPrimaryLocation W43624513651 @default.
- W4362451365 hasRelatedWork W1507266234 @default.
- W4362451365 hasRelatedWork W1669643531 @default.
- W4362451365 hasRelatedWork W2023680342 @default.
- W4362451365 hasRelatedWork W2110230079 @default.
- W4362451365 hasRelatedWork W2117664411 @default.
- W4362451365 hasRelatedWork W2117933325 @default.
- W4362451365 hasRelatedWork W2122581818 @default.
- W4362451365 hasRelatedWork W2159066190 @default.
- W4362451365 hasRelatedWork W2362106439 @default.