Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362472020> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4362472020 endingPage "3643" @default.
- W4362472020 startingPage "3643" @default.
- W4362472020 abstract "It is very significant for rural planning to accurately count the number and area of rural homesteads by means of automation. The development of deep learning makes it possible to achieve this goal. At present, many effective works have been conducted to extract building objects from VHR images using semantic segmentation technology, but they do not extract instance objects and do not work for densely distributed and overlapping rural homesteads. Most of the existing mainstream instance segmentation frameworks are based on the top-down structure. The model is complex and requires a large number of manually set thresholds. In order to solve the above difficult problems, we designed a simple query-based instance segmentation framework, QueryFormer, which includes an encoder and a decoder. A multi-scale deformable attention mechanism is incorporated into the encoder, resulting in significant computational savings, while also achieving effective results. In the decoder, we designed multiple groups, and used a Many-to-One label assignment method to make the image feature region be queried faster. Experiments show that our method achieves better performance (52.8AP) than the other most advanced models (+0.8AP) in the task of extracting rural homesteads in dense regions. This study shows that query-based instance segmentation framework has strong application potential in remote sensing images." @default.
- W4362472020 created "2023-04-05" @default.
- W4362472020 creator A5034116470 @default.
- W4362472020 creator A5036437827 @default.
- W4362472020 creator A5041966023 @default.
- W4362472020 creator A5067561458 @default.
- W4362472020 date "2023-03-31" @default.
- W4362472020 modified "2023-10-02" @default.
- W4362472020 title "A Query-Based Network for Rural Homestead Extraction from VHR Remote Sensing Images" @default.
- W4362472020 cites W2026723939 @default.
- W4362472020 cites W2043665634 @default.
- W4362472020 cites W2108597246 @default.
- W4362472020 cites W2194775991 @default.
- W4362472020 cites W2303172903 @default.
- W4362472020 cites W2395611524 @default.
- W4362472020 cites W2412782625 @default.
- W4362472020 cites W2620429297 @default.
- W4362472020 cites W2908320224 @default.
- W4362472020 cites W2962914239 @default.
- W4362472020 cites W2963150697 @default.
- W4362472020 cites W2963849369 @default.
- W4362472020 cites W2964241181 @default.
- W4362472020 cites W2966450079 @default.
- W4362472020 cites W2993182889 @default.
- W4362472020 cites W3012320977 @default.
- W4362472020 cites W3034681942 @default.
- W4362472020 cites W3035358681 @default.
- W4362472020 cites W3083786945 @default.
- W4362472020 cites W3113410735 @default.
- W4362472020 cites W3126435384 @default.
- W4362472020 cites W3138211645 @default.
- W4362472020 cites W3138516171 @default.
- W4362472020 cites W3150573203 @default.
- W4362472020 cites W3203892710 @default.
- W4362472020 cites W4214613769 @default.
- W4362472020 cites W4280552185 @default.
- W4362472020 cites W4303980708 @default.
- W4362472020 cites W4306399598 @default.
- W4362472020 cites W4312815172 @default.
- W4362472020 cites W639708223 @default.
- W4362472020 doi "https://doi.org/10.3390/s23073643" @default.
- W4362472020 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37050702" @default.
- W4362472020 hasPublicationYear "2023" @default.
- W4362472020 type Work @default.
- W4362472020 citedByCount "2" @default.
- W4362472020 countsByYear W43624720202023 @default.
- W4362472020 crossrefType "journal-article" @default.
- W4362472020 hasAuthorship W4362472020A5034116470 @default.
- W4362472020 hasAuthorship W4362472020A5036437827 @default.
- W4362472020 hasAuthorship W4362472020A5041966023 @default.
- W4362472020 hasAuthorship W4362472020A5067561458 @default.
- W4362472020 hasBestOaLocation W43624720201 @default.
- W4362472020 hasConcept C111919701 @default.
- W4362472020 hasConcept C118505674 @default.
- W4362472020 hasConcept C119857082 @default.
- W4362472020 hasConcept C124101348 @default.
- W4362472020 hasConcept C124504099 @default.
- W4362472020 hasConcept C153180895 @default.
- W4362472020 hasConcept C154945302 @default.
- W4362472020 hasConcept C41008148 @default.
- W4362472020 hasConcept C52622490 @default.
- W4362472020 hasConcept C89600930 @default.
- W4362472020 hasConceptScore W4362472020C111919701 @default.
- W4362472020 hasConceptScore W4362472020C118505674 @default.
- W4362472020 hasConceptScore W4362472020C119857082 @default.
- W4362472020 hasConceptScore W4362472020C124101348 @default.
- W4362472020 hasConceptScore W4362472020C124504099 @default.
- W4362472020 hasConceptScore W4362472020C153180895 @default.
- W4362472020 hasConceptScore W4362472020C154945302 @default.
- W4362472020 hasConceptScore W4362472020C41008148 @default.
- W4362472020 hasConceptScore W4362472020C52622490 @default.
- W4362472020 hasConceptScore W4362472020C89600930 @default.
- W4362472020 hasIssue "7" @default.
- W4362472020 hasLocation W43624720201 @default.
- W4362472020 hasLocation W43624720202 @default.
- W4362472020 hasLocation W43624720203 @default.
- W4362472020 hasOpenAccess W4362472020 @default.
- W4362472020 hasPrimaryLocation W43624720201 @default.
- W4362472020 hasRelatedWork W1964120219 @default.
- W4362472020 hasRelatedWork W2000165426 @default.
- W4362472020 hasRelatedWork W2114557664 @default.
- W4362472020 hasRelatedWork W2144059113 @default.
- W4362472020 hasRelatedWork W2146076056 @default.
- W4362472020 hasRelatedWork W2385132419 @default.
- W4362472020 hasRelatedWork W2772780115 @default.
- W4362472020 hasRelatedWork W2811390910 @default.
- W4362472020 hasRelatedWork W2942471066 @default.
- W4362472020 hasRelatedWork W3003836766 @default.
- W4362472020 hasVolume "23" @default.
- W4362472020 isParatext "false" @default.
- W4362472020 isRetracted "false" @default.
- W4362472020 workType "article" @default.