Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362472169> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4362472169 endingPage "2743" @default.
- W4362472169 startingPage "2739" @default.
- W4362472169 abstract "No AccessTechnical NotesDebris Blocker and Flow Terminator for a Shock TunnelBen A. Segall, David Shekhtman, Ahsan Hameed, James H. Chen, Alex R. Dworzanczyk and Nicholaus J. ParzialeBen A. Segall https://orcid.org/0000-0002-2259-0625Stevens Institute of Technology, Hoboken, New Jersey 07030*Graduate Student, Mechanical Engineering, Castle Point on Hudson.Search for more papers by this author, David ShekhtmanStevens Institute of Technology, Hoboken, New Jersey 07030†Postdoctoral Researcher, Mechanical Engineering, Castle Point on Hudson.Search for more papers by this author, Ahsan Hameed https://orcid.org/0000-0001-9563-3959Stevens Institute of Technology, Hoboken, New Jersey 07030*Graduate Student, Mechanical Engineering, Castle Point on Hudson.Search for more papers by this author, James H. ChenStevens Institute of Technology, Hoboken, New Jersey 07030*Graduate Student, Mechanical Engineering, Castle Point on Hudson.Search for more papers by this author, Alex R. DworzanczykStevens Institute of Technology, Hoboken, New Jersey 07030*Graduate Student, Mechanical Engineering, Castle Point on Hudson.Search for more papers by this author and Nicholaus J. ParzialeStevens Institute of Technology, Hoboken, New Jersey 07030‡Associate Professor, Mechanical Engineering, Castle Point on Hudson; . Senior Member AIAA (Corresponding Author).Search for more papers by this authorPublished Online:31 Mar 2023https://doi.org/10.2514/1.J062348SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations About References [1] Leyva I. A., “The Relentless Pursuit of Hypersonic Flight,” Physics Today, Vol. 70, No. 11, 2017, pp. 30–36. https://doi.org/10.1063/PT.3.3762 CrossrefGoogle Scholar[2] Hannemann K., “Short-Duration Testing of High Enthalpy, High Pressure, Hypersonic Flows,” Springer Handbook of Experimental Fluid Mechanics, edited by Tropea C., Yarin A. L. and Foss J. F., Springer, New York, 2007, pp. 1081–1125. Google Scholar[3] Danehy P. M., Weisberger J., Johansen C., Reese D., Fahringer T., Parziale N. J., Dedic C., Estevadeordal J. and Cruden B. A., “Non-Intrusive Measurement Techniques for Flow Characterization of Hypersonic Wind Tunnels,” Flow Characterization and Modeling of Hypersonic Wind Tunnels (NATO Science and Technology Organization Lecture Series STO-AVT 325), von Kármán Inst. NF1676L-31725, Brussels, Belgium, 2018, https://ntrs.nasa.gov/citations/20190029251. Google Scholar[4] Hertzberg A., Wittliff C. E. and Hall J. G., “Summary of Shock Tunnel Development and its Application to Hypersonic Research,” U.S. Air Force Office of Scientific Research TR 60-139, Arlington, VA, 1961. Google Scholar[5] Chue R. S. M. and Eitelberg G., “Studies of the Transient Flows in High Enthalpy Shock Tunnels,” Experiments in Fluids, Vol. 25, Nos. 5–6, 1998, pp. 474–486. https://doi.org/10.1007/s003480050253 CrossrefGoogle Scholar[6] Hanneman K. and Beck W. H., “Aerothermodynamics Research in the DLR High Enthalpy Shock Tunnel HEG,” Advanced Hypersonic Test Facilities, AIAA, Reston, VA, 2002, pp. 205–238. https://doi.org/10.2514/5.9781600866678.0205.0237 Google Scholar[7] Holden M. S., “Development and Code Evaluation Studies in Hypervelocity Flows in the LENS Facility,” Proceedings of the 2nd European Symposium on Aerodynamics for Space Vehicles, European Space Agency, ESTEC, Paris, Noordwijk, The Netherlands, 1994, pp. 319–334. Google Scholar[8] Holden M. S. and Parker R. A., “LENS Hypervelocity Tunnels and Application to Vehicle Testing at Duplicated Flight Conditions,” Advanced Hypersonic Test Facilities, AIAA, Reston, VA, 2002, pp. 73–110. https://doi.org/10.2514/5.9781600866678.0073.0110 Google Scholar[9] Lee J. K., Park C. and Kwon O. J., “Experimental Study of Shock Tunnel Flow with a Stationary Throat Plug,” Shock Waves, Vol. 22, July 2012, pp. 295–305. https://doi.org/10.1007/s00193-012-0370-2 CrossrefGoogle Scholar[10] Lee J. K., Park C. and Kwon O. J., “Experimental and Numerical Study of Stationary Throat Plug in Shock Tunnel,” Journal of Thermophysics and Heat Transfer, Vol. 29, No. 3, 2015, pp. 482–495. https://doi.org/10.2514/1.T4084 LinkGoogle Scholar[11] Lee J. K., Park C. and Kwon O. J., “Experimental Study of Moving Throat Plug in a Shock Tunnel,” Shock Waves, Vol. 25, July 2015, pp. 431–442. https://doi.org/10.1007/s00193-015-0573-4 CrossrefGoogle Scholar[12] Hornung H. G. and Parziale N. J., “Reflected Shock Tunnel Noise Control,” Proceedings of the 15th International Conference on the Methods of Aerophysical Research, Akademgorodok, Novosibirsk, Russia, 2010. Google Scholar[13] Hornung H. G., “Performance Data of the New Free-Piston Shock Tunnel at GALCIT,” Proceedings of 17th AIAA Aerospace Ground Testing Conference, AIAA Paper 1992-3943, 1992. https://doi.org/10.2514/6.1992-3943 Google Scholar[14] Shekhtman D., Hameed A., Segall B. A., Dworzanczyk A. R. and Parziale N. J., “Initial Shakedown Testing of the Stevens Shock Tunnel,” Proceedings of AIAA SciTech 2022, AIAA Paper 2022-1402, 2022. https://doi.org/10.2514/6.2022-1402 Google Scholar[15] Laufer J., “Some Statistical Properties of the Pressure Field Radiated by a Turbulent Boundary Layer,” Physics of Fluids (1958–1988), Vol. 7, No. 8, 1964, pp. 1191–1197. https://doi.org/10.1063/1.1711360 CrossrefGoogle Scholar[16] Schneider S. P., “Development of Hypersonic Quiet Tunnels,” Journal of Spacecraft and Rockets, Vol. 45, No. 4, 2008, pp. 641–664. https://doi.org/10.2514/1.34489 LinkGoogle Scholar[17] Parziale N. J., Shepherd J. E. and Hornung H. G., “Free-Stream Density Perturbations in a Reflected-Shock Tunnel,” Experiments in Fluids, Vol. 55, No. 2, 2014, Paper 1665. https://doi.org/10.1007/s00348-014-1665-0 CrossrefGoogle Scholar[18] Parziale N. J., Jewell J. S., Leyva I. A. and Shepherd J. E., “Effects of Shock-Tube Cleanliness on Slender-Body Hypersonic Instability and Transition Studies at High-Enthalpy,” Proceedings of AIAA SciTech 2015, AIAA Paper 2015-1786, 2015. https://doi.org/10.2514/6.2015-1786 Google Scholar[19] Jewell J. S., Parziale N. J., Leyva I. A. and Shepherd J. E., “Effects of Shock-Tube Cleanliness on Hypersonic Boundary Layer Transition at High Enthalpy,” AIAA Journal, Vol. 55, No. 1, 2017, pp. 332–338. https://doi.org/10.2514/1.J054897 LinkGoogle Scholar[20] Davies L., “The Interaction of the Reflected Shock with the Boundary Layer in a Shock Tube. Part 1,” Her Majesty’s Stationary Office, Ministry of Aviation: Aeronautic Research Council CP-880, London, July 1966. Google Scholar[21] Davies L. and Wilson J. L., “Influence of Reflected Shock and Boundary-Layer Interaction on Shock-Tube Flows,” Physics of Fluids, Vol. 12, No. 5, 1969, Paper I37. https://doi.org/10.1063/1.1692625 CrossrefGoogle Scholar[22] Chue R. S. M., Tsai C. Y. and Bakos R. J., “Driver Gas Contamination in a Detonation-Driven Reflected-Shock Tunnel,” Shock Waves, Vol. 13, March 2003, pp. 367–380. https://doi.org/10.1007/s00193-003-0221-2 CrossrefGoogle Scholar[23] Sudani N. and Hornung H. G., “Gasdynamical Detectors of Driver Gas Contamination in a High-Enthalpy Shock Tunnel,” AIAA Journal, Vol. 36, No. 3, 1998, pp. 313–319. https://doi.org/10.2514/2.383 LinkGoogle Scholar[24] Sudani N., Valiferdowsi B. and Hornung H. G., “Test Time Increase by Delaying Driver Gas Contamination for Reflected Shock Tunnels,” AIAA Journal, Vol. 38, No. 9, 2000, pp. 1497–1503. https://doi.org/10.2514/2.1138 LinkGoogle Scholar[25] Hannemann K., Schneider M., Reimann B. and Schramm J. M., “The Influence and Delay of Driver Gas Contamination in HEG,” 21st AIAA Aerodynamic Measurement Technology and Ground Testing Conference, AIAA Paper 2000-2593, 2000, pp. 1–14. https://doi.org/10.2514/6.2000-2593 Google Scholar[26] Olivier H., “The Aachen Shock Tunnel TH2 with Dual Driver Mode Operation,” Experimental Methods of Shock Wave Research, Springer, New York, 2016, pp. 111–129. https://doi.org/10.1007/978-3-319-23745-9_5 Google Scholar[27] Goozée R. J., Seal P. A. and Saxena D. R., “Simulation of a Complete Reflected Shock Tunnel Showing a Vortex Mechanism for Flow Contamination,” Shock Waves, Vol. 15, Nos. 3–4, 2006, pp. 165–176. https://doi.org/10.1007/s00193-006-0015-4 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Articles in Advance CrossmarkInformationCopyright © 2023 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronauticsAerospace SciencesFlow Control ValvesFlow Diagnostics and ControlFlow RegimesFluid DynamicsFluid Mechanics KeywordsFreestream Mach NumberFluid MechanicsFlow ConditionsPressure Relief ValveCenterbodyNozzle Flow TerminatorHypersonic Ground TestingShock TunnelsMach 6Flow QualityAcknowledgmentsBen A. Segall, David Shekhtman, Ahsan Hameed, James H. Chen, Alex R. Dworzanczyk, and Nicholaus J. Parziale were supported by U.S. Office of Naval Research and U.S. Air Force Office of Scientific Research (AFOSR) grants, including N00014-19-1-2523, N00014-20-1-2637, N00014-20-1-2682, N00014-20-1-2549, FA9550-18-1-0403, and FA9550-19-1-0182. We thank Eric Marineau and the U.S. Office of Naval Research for sponsoring the construction and development of the Stevens Shock Tunnel. We also thank AFOSR Program Manager Sarah Popkin for her support.PDF Received17 August 2022Accepted1 March 2023Published online31 March 2023" @default.
- W4362472169 created "2023-04-05" @default.
- W4362472169 creator A5018995311 @default.
- W4362472169 creator A5036298951 @default.
- W4362472169 creator A5038442747 @default.
- W4362472169 creator A5066617430 @default.
- W4362472169 creator A5072076113 @default.
- W4362472169 creator A5077738223 @default.
- W4362472169 date "2023-05-01" @default.
- W4362472169 modified "2023-10-15" @default.
- W4362472169 title "Debris Blocker and Flow Terminator for a Shock Tunnel" @default.
- W4362472169 cites W104365781 @default.
- W4362472169 cites W1977204866 @default.
- W4362472169 cites W1991913083 @default.
- W4362472169 cites W2006854646 @default.
- W4362472169 cites W2017169371 @default.
- W4362472169 cites W2029632529 @default.
- W4362472169 cites W2042329716 @default.
- W4362472169 cites W2045180959 @default.
- W4362472169 cites W2046401431 @default.
- W4362472169 cites W2057915451 @default.
- W4362472169 cites W2085222496 @default.
- W4362472169 cites W2091967473 @default.
- W4362472169 cites W2120621882 @default.
- W4362472169 cites W2336547992 @default.
- W4362472169 cites W2518880395 @default.
- W4362472169 cites W2765977346 @default.
- W4362472169 doi "https://doi.org/10.2514/1.j062348" @default.
- W4362472169 hasPublicationYear "2023" @default.
- W4362472169 type Work @default.
- W4362472169 citedByCount "0" @default.
- W4362472169 crossrefType "journal-article" @default.
- W4362472169 hasAuthorship W4362472169A5018995311 @default.
- W4362472169 hasAuthorship W4362472169A5036298951 @default.
- W4362472169 hasAuthorship W4362472169A5038442747 @default.
- W4362472169 hasAuthorship W4362472169A5066617430 @default.
- W4362472169 hasAuthorship W4362472169A5072076113 @default.
- W4362472169 hasAuthorship W4362472169A5077738223 @default.
- W4362472169 hasConcept C121332964 @default.
- W4362472169 hasConcept C126322002 @default.
- W4362472169 hasConcept C127313418 @default.
- W4362472169 hasConcept C127413603 @default.
- W4362472169 hasConcept C146978453 @default.
- W4362472169 hasConcept C153294291 @default.
- W4362472169 hasConcept C2776023875 @default.
- W4362472169 hasConcept C2776643431 @default.
- W4362472169 hasConcept C2781300812 @default.
- W4362472169 hasConcept C38349280 @default.
- W4362472169 hasConcept C39432304 @default.
- W4362472169 hasConcept C57879066 @default.
- W4362472169 hasConcept C70477161 @default.
- W4362472169 hasConcept C71924100 @default.
- W4362472169 hasConceptScore W4362472169C121332964 @default.
- W4362472169 hasConceptScore W4362472169C126322002 @default.
- W4362472169 hasConceptScore W4362472169C127313418 @default.
- W4362472169 hasConceptScore W4362472169C127413603 @default.
- W4362472169 hasConceptScore W4362472169C146978453 @default.
- W4362472169 hasConceptScore W4362472169C153294291 @default.
- W4362472169 hasConceptScore W4362472169C2776023875 @default.
- W4362472169 hasConceptScore W4362472169C2776643431 @default.
- W4362472169 hasConceptScore W4362472169C2781300812 @default.
- W4362472169 hasConceptScore W4362472169C38349280 @default.
- W4362472169 hasConceptScore W4362472169C39432304 @default.
- W4362472169 hasConceptScore W4362472169C57879066 @default.
- W4362472169 hasConceptScore W4362472169C70477161 @default.
- W4362472169 hasConceptScore W4362472169C71924100 @default.
- W4362472169 hasFunder F4320337345 @default.
- W4362472169 hasFunder F4320338279 @default.
- W4362472169 hasIssue "6" @default.
- W4362472169 hasLocation W43624721691 @default.
- W4362472169 hasOpenAccess W4362472169 @default.
- W4362472169 hasPrimaryLocation W43624721691 @default.
- W4362472169 hasRelatedWork W1584404497 @default.
- W4362472169 hasRelatedWork W1972506182 @default.
- W4362472169 hasRelatedWork W1987844701 @default.
- W4362472169 hasRelatedWork W1992193253 @default.
- W4362472169 hasRelatedWork W2020477468 @default.
- W4362472169 hasRelatedWork W2091265746 @default.
- W4362472169 hasRelatedWork W2092159449 @default.
- W4362472169 hasRelatedWork W2268442924 @default.
- W4362472169 hasRelatedWork W2380912378 @default.
- W4362472169 hasRelatedWork W620971476 @default.
- W4362472169 hasVolume "61" @default.
- W4362472169 isParatext "false" @default.
- W4362472169 isRetracted "false" @default.
- W4362472169 workType "article" @default.