Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362472862> ?p ?o ?g. }
- W4362472862 endingPage "2619" @default.
- W4362472862 startingPage "2619" @default.
- W4362472862 abstract "Due to multiple comorbid illnesses, polypharmacy, and age-related changes in pharmacokinetics and pharmacodynamics in older adults, the prevalence of potentially inappropriate medications (PIMs) is high, which affects the quality of life of older adults. Building an effective warning model is necessary for the early identification of PIMs to prevent harm caused by medication in geriatric patients. The purpose of this study was to develop a machine learning-based model for the warning of PIMs in older Chinese outpatients. This retrospective study was conducted among geriatric outpatients in nine tertiary hospitals in Chengdu from January 2018 to December 2018. The Beers criteria 2019 were used to assess PIMs in geriatric outpatients. Three problem transformation methods were used to tackle the multilabel classification problem in prescriptions. After the division of patient prescriptions into the training and test sets (8:2), we adopted six widely used classification algorithms to conduct the classification task and assessed the discriminative performance by the accuracy, precision, recall, F1 scores, subset accuracy (ss Acc), and Hamming loss (hm) of each model. The results showed that among 11,741 older patient prescriptions, 5816 PIMs were identified in 4038 (34.39%) patient prescriptions. A total of 41 types of PIMs were identified in these prescriptions. The three-problem transformation methods included label power set (LP), classifier chains (CC), and binary relevance (BR). Six classification algorithms were used to establish the warning models, including Random Forest (RF), Light Gradient Boosting Machine (LightGBM), eXtreme Gradient Boosting (XGBoost), CatBoost, Deep Forest (DF), and TabNet. The CC + CatBoost model had the highest accuracy value (97.83%), recall value (89.34%), F1 value (90.69%), and ss Acc value (97.79%) with a good precision value (92.18%) and the lowest hm value (0.0006). Therefore, the CC + CatBoost model was selected to predict the occurrence of PIM in geriatric Chinese patients. This study's novelty establishes a warning model for PIMs in geriatric patients by using machine learning. With the popularity of electronic patient record systems, sophisticated computer algorithms can be implemented at the bedside to improve medication use safety in geriatric patients in the future." @default.
- W4362472862 created "2023-04-05" @default.
- W4362472862 creator A5001892867 @default.
- W4362472862 creator A5020396855 @default.
- W4362472862 creator A5022163048 @default.
- W4362472862 creator A5030745292 @default.
- W4362472862 creator A5053789581 @default.
- W4362472862 creator A5089420346 @default.
- W4362472862 date "2023-03-30" @default.
- W4362472862 modified "2023-09-26" @default.
- W4362472862 title "Developing a Warning Model of Potentially Inappropriate Medications in Older Chinese Outpatients in Tertiary Hospitals: A Machine-Learning Study" @default.
- W4362472862 cites W11706945 @default.
- W4362472862 cites W138703511 @default.
- W4362472862 cites W1554786661 @default.
- W4362472862 cites W1998633112 @default.
- W4362472862 cites W2018685660 @default.
- W4362472862 cites W2020396510 @default.
- W4362472862 cites W2028255818 @default.
- W4362472862 cites W2077922590 @default.
- W4362472862 cites W2089213350 @default.
- W4362472862 cites W2091517562 @default.
- W4362472862 cites W2106472069 @default.
- W4362472862 cites W2120821613 @default.
- W4362472862 cites W2121325443 @default.
- W4362472862 cites W2131656660 @default.
- W4362472862 cites W2133527293 @default.
- W4362472862 cites W2139867940 @default.
- W4362472862 cites W2142545726 @default.
- W4362472862 cites W2156935079 @default.
- W4362472862 cites W2157548415 @default.
- W4362472862 cites W2165057233 @default.
- W4362472862 cites W2405777466 @default.
- W4362472862 cites W2492561890 @default.
- W4362472862 cites W2492778706 @default.
- W4362472862 cites W2582124757 @default.
- W4362472862 cites W2588570836 @default.
- W4362472862 cites W2697493422 @default.
- W4362472862 cites W2787596522 @default.
- W4362472862 cites W2790265810 @default.
- W4362472862 cites W2800265453 @default.
- W4362472862 cites W2810819381 @default.
- W4362472862 cites W2891674734 @default.
- W4362472862 cites W2896814159 @default.
- W4362472862 cites W2899740939 @default.
- W4362472862 cites W2902835879 @default.
- W4362472862 cites W2991584847 @default.
- W4362472862 cites W3005641918 @default.
- W4362472862 cites W3081229210 @default.
- W4362472862 cites W3130451294 @default.
- W4362472862 cites W3154308134 @default.
- W4362472862 cites W3163006863 @default.
- W4362472862 cites W3174804723 @default.
- W4362472862 cites W333819909 @default.
- W4362472862 cites W4221011932 @default.
- W4362472862 cites W4224305765 @default.
- W4362472862 cites W4241984066 @default.
- W4362472862 cites W4281570236 @default.
- W4362472862 cites W4293079970 @default.
- W4362472862 doi "https://doi.org/10.3390/jcm12072619" @default.
- W4362472862 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37048702" @default.
- W4362472862 hasPublicationYear "2023" @default.
- W4362472862 type Work @default.
- W4362472862 citedByCount "0" @default.
- W4362472862 crossrefType "journal-article" @default.
- W4362472862 hasAuthorship W4362472862A5001892867 @default.
- W4362472862 hasAuthorship W4362472862A5020396855 @default.
- W4362472862 hasAuthorship W4362472862A5022163048 @default.
- W4362472862 hasAuthorship W4362472862A5030745292 @default.
- W4362472862 hasAuthorship W4362472862A5053789581 @default.
- W4362472862 hasAuthorship W4362472862A5089420346 @default.
- W4362472862 hasBestOaLocation W43624728621 @default.
- W4362472862 hasConcept C119857082 @default.
- W4362472862 hasConcept C154945302 @default.
- W4362472862 hasConcept C169258074 @default.
- W4362472862 hasConcept C177713679 @default.
- W4362472862 hasConcept C2426938 @default.
- W4362472862 hasConcept C36434225 @default.
- W4362472862 hasConcept C41008148 @default.
- W4362472862 hasConcept C70153297 @default.
- W4362472862 hasConcept C71924100 @default.
- W4362472862 hasConcept C98274493 @default.
- W4362472862 hasConceptScore W4362472862C119857082 @default.
- W4362472862 hasConceptScore W4362472862C154945302 @default.
- W4362472862 hasConceptScore W4362472862C169258074 @default.
- W4362472862 hasConceptScore W4362472862C177713679 @default.
- W4362472862 hasConceptScore W4362472862C2426938 @default.
- W4362472862 hasConceptScore W4362472862C36434225 @default.
- W4362472862 hasConceptScore W4362472862C41008148 @default.
- W4362472862 hasConceptScore W4362472862C70153297 @default.
- W4362472862 hasConceptScore W4362472862C71924100 @default.
- W4362472862 hasConceptScore W4362472862C98274493 @default.
- W4362472862 hasFunder F4320333335 @default.
- W4362472862 hasIssue "7" @default.
- W4362472862 hasLocation W43624728621 @default.
- W4362472862 hasLocation W43624728622 @default.
- W4362472862 hasLocation W43624728623 @default.
- W4362472862 hasLocation W43624728624 @default.
- W4362472862 hasOpenAccess W4362472862 @default.