Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362474080> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4362474080 endingPage "113434" @default.
- W4362474080 startingPage "113434" @default.
- W4362474080 abstract "An acyclic edge coloring of a graph is a proper edge coloring in which there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $a'(G)$, is the minimum positive integer $k$ such that $G$ has an acyclic edge coloring with $k$ colors. It has been conjectured by Fiamv{c}'{i}k that $a'(G) le Delta+2$ for any graph $G$ with maximum degree $Delta$. Linear arboricity of a graph $G$, denoted by $la(G)$, is the minimum number of linear forests into which the edges of $G$ can be partitioned. A graph is said to be chordless if no cycle in the graph contains a chord. Every $2$-connected chordless graph is a minimally $2$-connected graph. It was shown by Basavaraju and Chandran that if $G$ is $2$-degenerate, then $a'(G) le Delta+1$. Since chordless graphs are also $2$-degenerate, we have $a'(G) le Delta+1$ for any chordless graph $G$. Machado, de Figueiredo and Trotignon proved that the chromatic index of a chordless graph is $Delta$ when $Delta ge 3$. They also obtained a polynomial time algorithm to color a chordless graph optimally. We improve this result by proving that the acyclic chromatic index of a chordless graph is $Delta$, except when $Delta=2$ and the graph has a cycle, in which case it is $Delta+1$. We also provide the sketch of a polynomial time algorithm for an optimal acyclic edge coloring of a chordless graph. As a byproduct, we also prove that $la(G) = lceil frac{Delta }{2} rceil$, unless $G$ has a cycle with $Delta=2$, in which case $la(G) = lceil frac{Delta+1}{2} rceil = 2$. To obtain the result on acyclic chromatic index, we prove a structural result on chordless graphs which is a refinement of the structure given by Machado, de Figueiredo and Trotignon for this class of graphs. This might be of independent interest." @default.
- W4362474080 created "2023-04-05" @default.
- W4362474080 creator A5027559765 @default.
- W4362474080 creator A5037435141 @default.
- W4362474080 creator A5055773603 @default.
- W4362474080 date "2023-08-01" @default.
- W4362474080 modified "2023-09-25" @default.
- W4362474080 title "Acyclic chromatic index of chordless graphs" @default.
- W4362474080 cites W151146055 @default.
- W4362474080 cites W1653009521 @default.
- W4362474080 cites W1965850005 @default.
- W4362474080 cites W1966769222 @default.
- W4362474080 cites W1987920422 @default.
- W4362474080 cites W1995420362 @default.
- W4362474080 cites W2022222893 @default.
- W4362474080 cites W2038443890 @default.
- W4362474080 cites W2045465783 @default.
- W4362474080 cites W2102669784 @default.
- W4362474080 cites W2122887165 @default.
- W4362474080 cites W2143263735 @default.
- W4362474080 cites W2313296208 @default.
- W4362474080 cites W2962835057 @default.
- W4362474080 cites W2962848554 @default.
- W4362474080 cites W4231906363 @default.
- W4362474080 cites W4239510351 @default.
- W4362474080 cites W4245550773 @default.
- W4362474080 cites W4248906376 @default.
- W4362474080 cites W4291166258 @default.
- W4362474080 doi "https://doi.org/10.1016/j.disc.2023.113434" @default.
- W4362474080 hasPublicationYear "2023" @default.
- W4362474080 type Work @default.
- W4362474080 citedByCount "0" @default.
- W4362474080 crossrefType "journal-article" @default.
- W4362474080 hasAuthorship W4362474080A5027559765 @default.
- W4362474080 hasAuthorship W4362474080A5037435141 @default.
- W4362474080 hasAuthorship W4362474080A5055773603 @default.
- W4362474080 hasBestOaLocation W43624740802 @default.
- W4362474080 hasConcept C114614502 @default.
- W4362474080 hasConcept C118615104 @default.
- W4362474080 hasConcept C123809776 @default.
- W4362474080 hasConcept C126385604 @default.
- W4362474080 hasConcept C132525143 @default.
- W4362474080 hasConcept C149530733 @default.
- W4362474080 hasConcept C203776342 @default.
- W4362474080 hasConcept C33923547 @default.
- W4362474080 hasConcept C73380178 @default.
- W4362474080 hasConceptScore W4362474080C114614502 @default.
- W4362474080 hasConceptScore W4362474080C118615104 @default.
- W4362474080 hasConceptScore W4362474080C123809776 @default.
- W4362474080 hasConceptScore W4362474080C126385604 @default.
- W4362474080 hasConceptScore W4362474080C132525143 @default.
- W4362474080 hasConceptScore W4362474080C149530733 @default.
- W4362474080 hasConceptScore W4362474080C203776342 @default.
- W4362474080 hasConceptScore W4362474080C33923547 @default.
- W4362474080 hasConceptScore W4362474080C73380178 @default.
- W4362474080 hasFunder F4320334771 @default.
- W4362474080 hasIssue "8" @default.
- W4362474080 hasLocation W43624740801 @default.
- W4362474080 hasLocation W43624740802 @default.
- W4362474080 hasOpenAccess W4362474080 @default.
- W4362474080 hasPrimaryLocation W43624740801 @default.
- W4362474080 hasRelatedWork W1502126187 @default.
- W4362474080 hasRelatedWork W1681279317 @default.
- W4362474080 hasRelatedWork W1904355337 @default.
- W4362474080 hasRelatedWork W1966414107 @default.
- W4362474080 hasRelatedWork W2024593554 @default.
- W4362474080 hasRelatedWork W2091731365 @default.
- W4362474080 hasRelatedWork W2225873318 @default.
- W4362474080 hasRelatedWork W2616356260 @default.
- W4362474080 hasRelatedWork W4290187370 @default.
- W4362474080 hasRelatedWork W2253189310 @default.
- W4362474080 hasVolume "346" @default.
- W4362474080 isParatext "false" @default.
- W4362474080 isRetracted "false" @default.
- W4362474080 workType "article" @default.