Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362474142> ?p ?o ?g. }
- W4362474142 endingPage "217" @default.
- W4362474142 startingPage "179" @default.
- W4362474142 abstract "This paper reports on the creation of specialized word lists in traditional Chinese medicine (TCM), which is a discipline using vocabulary across languages (i.e., Chinese and English) and involves learners with different L1 backgrounds. First, a TCM Word List of 2,778 specialized words was established from corpora of TCM textbooks and journal articles. Selection criteria included specialized meaning, keyness in a corpus of general written English compared to the TCM Corpora, and frequency. The resulting TCM list covered 36.65% of the TCM Corpora but had low coverage over corpora of general written English and medical English. The TCM Word List was then divided into three sub-lists based on frequency, and graded into three levels. Level 1 contains high-frequency lexical items in English (e.g., organ, coating); Level 2 contains items that are mid-, low-frequency, or beyond any frequency levels (e.g., pericarpium, metabolism); and Level 3 contains Chinese loan words (e.g., qi, yang). Last, there is an overlap of 309 word families between this list and an earlier TCM list by Hsu (2018), which excludes words from the 1st-3rd 1,000 word families in English. Suggestions for teachers and future research are provided." @default.
- W4362474142 created "2023-04-05" @default.
- W4362474142 creator A5003884714 @default.
- W4362474142 creator A5024752579 @default.
- W4362474142 date "2023-03-31" @default.
- W4362474142 modified "2023-10-14" @default.
- W4362474142 title "Specialized vocabulary across languages: The case of traditional Chinese medicine" @default.
- W4362474142 cites W1599927593 @default.
- W4362474142 cites W1964558152 @default.
- W4362474142 cites W1966959674 @default.
- W4362474142 cites W1969020117 @default.
- W4362474142 cites W1971568807 @default.
- W4362474142 cites W1976930422 @default.
- W4362474142 cites W1995231344 @default.
- W4362474142 cites W2001084366 @default.
- W4362474142 cites W2003689301 @default.
- W4362474142 cites W2062228322 @default.
- W4362474142 cites W2063766243 @default.
- W4362474142 cites W2072790586 @default.
- W4362474142 cites W2079294855 @default.
- W4362474142 cites W2083292915 @default.
- W4362474142 cites W2097674935 @default.
- W4362474142 cites W2119922569 @default.
- W4362474142 cites W2140798747 @default.
- W4362474142 cites W2145713659 @default.
- W4362474142 cites W2161505200 @default.
- W4362474142 cites W2268178558 @default.
- W4362474142 cites W2270632195 @default.
- W4362474142 cites W2340292428 @default.
- W4362474142 cites W2345564991 @default.
- W4362474142 cites W2467312050 @default.
- W4362474142 cites W2491420228 @default.
- W4362474142 cites W2509684361 @default.
- W4362474142 cites W2587671992 @default.
- W4362474142 cites W2755237317 @default.
- W4362474142 cites W2773000356 @default.
- W4362474142 cites W2782719456 @default.
- W4362474142 cites W2791528117 @default.
- W4362474142 cites W2799483584 @default.
- W4362474142 cites W2800524938 @default.
- W4362474142 cites W2802691104 @default.
- W4362474142 cites W2927711141 @default.
- W4362474142 cites W2987159874 @default.
- W4362474142 cites W2996027383 @default.
- W4362474142 cites W3014357044 @default.
- W4362474142 cites W3024887427 @default.
- W4362474142 cites W3148079394 @default.
- W4362474142 cites W334279910 @default.
- W4362474142 cites W4221098462 @default.
- W4362474142 cites W4302038496 @default.
- W4362474142 cites W2220494677 @default.
- W4362474142 doi "https://doi.org/10.14746/ssllt.31677" @default.
- W4362474142 hasPublicationYear "2023" @default.
- W4362474142 type Work @default.
- W4362474142 citedByCount "0" @default.
- W4362474142 crossrefType "journal-article" @default.
- W4362474142 hasAuthorship W4362474142A5003884714 @default.
- W4362474142 hasAuthorship W4362474142A5024752579 @default.
- W4362474142 hasBestOaLocation W43624741421 @default.
- W4362474142 hasConcept C138885662 @default.
- W4362474142 hasConcept C142724271 @default.
- W4362474142 hasConcept C154945302 @default.
- W4362474142 hasConcept C15744967 @default.
- W4362474142 hasConcept C175293574 @default.
- W4362474142 hasConcept C188947578 @default.
- W4362474142 hasConcept C204321447 @default.
- W4362474142 hasConcept C204787440 @default.
- W4362474142 hasConcept C2777212361 @default.
- W4362474142 hasConcept C2777530160 @default.
- W4362474142 hasConcept C2777601683 @default.
- W4362474142 hasConcept C2780876879 @default.
- W4362474142 hasConcept C2993275117 @default.
- W4362474142 hasConcept C41008148 @default.
- W4362474142 hasConcept C41895202 @default.
- W4362474142 hasConcept C542102704 @default.
- W4362474142 hasConcept C71924100 @default.
- W4362474142 hasConcept C90805587 @default.
- W4362474142 hasConceptScore W4362474142C138885662 @default.
- W4362474142 hasConceptScore W4362474142C142724271 @default.
- W4362474142 hasConceptScore W4362474142C154945302 @default.
- W4362474142 hasConceptScore W4362474142C15744967 @default.
- W4362474142 hasConceptScore W4362474142C175293574 @default.
- W4362474142 hasConceptScore W4362474142C188947578 @default.
- W4362474142 hasConceptScore W4362474142C204321447 @default.
- W4362474142 hasConceptScore W4362474142C204787440 @default.
- W4362474142 hasConceptScore W4362474142C2777212361 @default.
- W4362474142 hasConceptScore W4362474142C2777530160 @default.
- W4362474142 hasConceptScore W4362474142C2777601683 @default.
- W4362474142 hasConceptScore W4362474142C2780876879 @default.
- W4362474142 hasConceptScore W4362474142C2993275117 @default.
- W4362474142 hasConceptScore W4362474142C41008148 @default.
- W4362474142 hasConceptScore W4362474142C41895202 @default.
- W4362474142 hasConceptScore W4362474142C542102704 @default.
- W4362474142 hasConceptScore W4362474142C71924100 @default.
- W4362474142 hasConceptScore W4362474142C90805587 @default.
- W4362474142 hasIssue "1" @default.
- W4362474142 hasLocation W43624741421 @default.
- W4362474142 hasOpenAccess W4362474142 @default.