Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362474832> ?p ?o ?g. }
- W4362474832 endingPage "e002934" @default.
- W4362474832 startingPage "e002934" @default.
- W4362474832 abstract "Objectives Psoriatic arthritis (PsA) phenotypes are typically defined by their clinical components, which may not reflect patients’ overlapping symptoms. This post hoc analysis aimed to identify hypothesis-free PsA phenotype clusters using machine learning to analyse data from the phase III DISCOVER-1/DISCOVER-2 clinical trials. Methods Pooled data from bio-naïve patients with active PsA receiving guselkumab 100 mg every 8/4 weeks were retrospectively analysed. Non-negative matrix factorisation was applied as an unsupervised machine learning technique to identify PsA phenotype clusters; baseline patient characteristics and clinical observations were input features. Minimal disease activity (MDA), disease activity index for psoriatic arthritis (DAPSA) low disease activity (LDA) and DAPSA remission at weeks 24 and 52 were evaluated. Results Eight clusters (n=661) were identified: cluster 1 (feet dominant), cluster 2 (male, overweight, psoriasis dominant), cluster 3 (hand dominant), cluster 4 (dactylitis dominant), cluster 5 (enthesitis, large joints), cluster 6 (enthesitis, small joints), cluster 7 (axial dominant) and cluster 8 (female, obese, large joints). At week 24, MDA response was highest in cluster 2 and lowest in clusters 3, 5 and 6; at week 52, it was highest in cluster 2 and lowest in cluster 5. At weeks 24 and 52, DAPSA LDA and remission were highest in cluster 2 and lowest in clusters 4 and 6, respectively. All clusters improved with guselkumab treatment over 52 weeks. Conclusions Unsupervised machine learning identified eight PsA phenotype clusters with significant differences in demographics, clinical features and treatment responses. In the future, such data could help support individualised treatment decisions." @default.
- W4362474832 created "2023-04-05" @default.
- W4362474832 creator A5011620868 @default.
- W4362474832 creator A5013138894 @default.
- W4362474832 creator A5016122411 @default.
- W4362474832 creator A5024114415 @default.
- W4362474832 creator A5031141146 @default.
- W4362474832 creator A5046382872 @default.
- W4362474832 creator A5048956254 @default.
- W4362474832 creator A5053353962 @default.
- W4362474832 creator A5057705176 @default.
- W4362474832 creator A5062337812 @default.
- W4362474832 creator A5064089456 @default.
- W4362474832 creator A5070478316 @default.
- W4362474832 creator A5084376077 @default.
- W4362474832 date "2023-03-01" @default.
- W4362474832 modified "2023-10-09" @default.
- W4362474832 title "Identification of PsA phenotypes with machine learning analytics using data from two phase III clinical trials of guselkumab in a bio-naïve population of patients with PsA" @default.
- W4362474832 cites W1902027874 @default.
- W4362474832 cites W2074802335 @default.
- W4362474832 cites W2113717019 @default.
- W4362474832 cites W2124465016 @default.
- W4362474832 cites W2148479313 @default.
- W4362474832 cites W2266629815 @default.
- W4362474832 cites W2313513962 @default.
- W4362474832 cites W2494623485 @default.
- W4362474832 cites W2585071281 @default.
- W4362474832 cites W2611521096 @default.
- W4362474832 cites W2766846920 @default.
- W4362474832 cites W2782272615 @default.
- W4362474832 cites W2795686103 @default.
- W4362474832 cites W2797662273 @default.
- W4362474832 cites W2901122096 @default.
- W4362474832 cites W2907256112 @default.
- W4362474832 cites W2916872998 @default.
- W4362474832 cites W2921763762 @default.
- W4362474832 cites W2941403945 @default.
- W4362474832 cites W2962671297 @default.
- W4362474832 cites W3011285271 @default.
- W4362474832 cites W3012050575 @default.
- W4362474832 cites W3013379292 @default.
- W4362474832 cites W3027539208 @default.
- W4362474832 cites W3092254846 @default.
- W4362474832 cites W3109370940 @default.
- W4362474832 cites W3135815400 @default.
- W4362474832 cites W3164024944 @default.
- W4362474832 cites W3173649223 @default.
- W4362474832 cites W3177112908 @default.
- W4362474832 cites W3178462055 @default.
- W4362474832 cites W3208759118 @default.
- W4362474832 cites W4283589104 @default.
- W4362474832 doi "https://doi.org/10.1136/rmdopen-2022-002934" @default.
- W4362474832 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37001920" @default.
- W4362474832 hasPublicationYear "2023" @default.
- W4362474832 type Work @default.
- W4362474832 citedByCount "0" @default.
- W4362474832 crossrefType "journal-article" @default.
- W4362474832 hasAuthorship W4362474832A5011620868 @default.
- W4362474832 hasAuthorship W4362474832A5013138894 @default.
- W4362474832 hasAuthorship W4362474832A5016122411 @default.
- W4362474832 hasAuthorship W4362474832A5024114415 @default.
- W4362474832 hasAuthorship W4362474832A5031141146 @default.
- W4362474832 hasAuthorship W4362474832A5046382872 @default.
- W4362474832 hasAuthorship W4362474832A5048956254 @default.
- W4362474832 hasAuthorship W4362474832A5053353962 @default.
- W4362474832 hasAuthorship W4362474832A5057705176 @default.
- W4362474832 hasAuthorship W4362474832A5062337812 @default.
- W4362474832 hasAuthorship W4362474832A5064089456 @default.
- W4362474832 hasAuthorship W4362474832A5070478316 @default.
- W4362474832 hasAuthorship W4362474832A5084376077 @default.
- W4362474832 hasBestOaLocation W43624748321 @default.
- W4362474832 hasConcept C126322002 @default.
- W4362474832 hasConcept C143998085 @default.
- W4362474832 hasConcept C164866538 @default.
- W4362474832 hasConcept C199360897 @default.
- W4362474832 hasConcept C2776260265 @default.
- W4362474832 hasConcept C2778019847 @default.
- W4362474832 hasConcept C2779134260 @default.
- W4362474832 hasConcept C2780131103 @default.
- W4362474832 hasConcept C2908647359 @default.
- W4362474832 hasConcept C41008148 @default.
- W4362474832 hasConcept C71924100 @default.
- W4362474832 hasConcept C99454951 @default.
- W4362474832 hasConceptScore W4362474832C126322002 @default.
- W4362474832 hasConceptScore W4362474832C143998085 @default.
- W4362474832 hasConceptScore W4362474832C164866538 @default.
- W4362474832 hasConceptScore W4362474832C199360897 @default.
- W4362474832 hasConceptScore W4362474832C2776260265 @default.
- W4362474832 hasConceptScore W4362474832C2778019847 @default.
- W4362474832 hasConceptScore W4362474832C2779134260 @default.
- W4362474832 hasConceptScore W4362474832C2780131103 @default.
- W4362474832 hasConceptScore W4362474832C2908647359 @default.
- W4362474832 hasConceptScore W4362474832C41008148 @default.
- W4362474832 hasConceptScore W4362474832C71924100 @default.
- W4362474832 hasConceptScore W4362474832C99454951 @default.
- W4362474832 hasIssue "1" @default.
- W4362474832 hasLocation W43624748321 @default.
- W4362474832 hasLocation W43624748322 @default.