Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362499066> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4362499066 abstract "Deep learning techniques haven been the efficient artificial intelligence techniques that is being used for developing models for autonomous feature extraction, classification and segmentation of the apple leaves diseases sand other plant diseases. However, most deep learning systems, such as Convolutional neural networks (CNN) and Long Short-term Memory (LSTM), necessitate a huge quantity of training data and are plagued by issues such as inflating gradients, overfitting, and class imbalance, among others. In this work, CNN-LSTM deep learning algorithm was proposed to address the challenges facing CNN and LSTM respectively. This work used the CNN-LSTM deep learning algorithm to develop a learning model for classification of foliar disease of apple leaves. In order to create learning classification models based on accuracy, specificity, sensitivity, and AUC standard performance evaluation techniques, both CNN and LSTM algorithms were employed. CNN-LSTM happened to be the best model in terms of accuracy, specificity, sensitivity, and AUC standard performance evaluation methodologies, with 98.00%,95.00%, 96.00parcent, and 94.00% respectively. Hence, the model has shown a significant improvement as compared to other models for being able to correctly classified apple leaves into affected leaves with disease/s and non-affected leaves with disease/s with 98.00% accuracy. Likewise, for the ability to classify the apple leaves affected with disease/s, correctly CNN-LSTM also outperformed other models with 95.00parcent. Moreover, CNN-LSTM based model also has shown a significant improvement as compared other models, for being able to correctly classified apple leaves that were not affected with disease/s with 96.00%." @default.
- W4362499066 created "2023-04-05" @default.
- W4362499066 creator A5002436802 @default.
- W4362499066 creator A5005880582 @default.
- W4362499066 creator A5006466753 @default.
- W4362499066 creator A5065732529 @default.
- W4362499066 creator A5079491817 @default.
- W4362499066 date "2023-01-23" @default.
- W4362499066 modified "2023-10-14" @default.
- W4362499066 title "CNN-LSTM Learning Approach for Classification of Foliar Disease of Apple" @default.
- W4362499066 cites W1980475594 @default.
- W4362499066 cites W2038044071 @default.
- W4362499066 cites W2589284964 @default.
- W4362499066 cites W2908052263 @default.
- W4362499066 cites W2944599236 @default.
- W4362499066 cites W3000813221 @default.
- W4362499066 cites W3010225408 @default.
- W4362499066 cites W3033457147 @default.
- W4362499066 cites W3045445851 @default.
- W4362499066 cites W3088127670 @default.
- W4362499066 cites W3090982825 @default.
- W4362499066 cites W3111451782 @default.
- W4362499066 cites W3113744761 @default.
- W4362499066 cites W3131910365 @default.
- W4362499066 cites W3164293071 @default.
- W4362499066 cites W3172544793 @default.
- W4362499066 cites W3182320150 @default.
- W4362499066 cites W3186733659 @default.
- W4362499066 cites W3213990291 @default.
- W4362499066 cites W4206609220 @default.
- W4362499066 cites W4210513948 @default.
- W4362499066 cites W4224249182 @default.
- W4362499066 cites W4292471432 @default.
- W4362499066 cites W4309035456 @default.
- W4362499066 cites W4309490200 @default.
- W4362499066 doi "https://doi.org/10.1109/icaisc56366.2023.10085039" @default.
- W4362499066 hasPublicationYear "2023" @default.
- W4362499066 type Work @default.
- W4362499066 citedByCount "1" @default.
- W4362499066 countsByYear W43624990662023 @default.
- W4362499066 crossrefType "proceedings-article" @default.
- W4362499066 hasAuthorship W4362499066A5002436802 @default.
- W4362499066 hasAuthorship W4362499066A5005880582 @default.
- W4362499066 hasAuthorship W4362499066A5006466753 @default.
- W4362499066 hasAuthorship W4362499066A5065732529 @default.
- W4362499066 hasAuthorship W4362499066A5079491817 @default.
- W4362499066 hasConcept C108583219 @default.
- W4362499066 hasConcept C119857082 @default.
- W4362499066 hasConcept C138885662 @default.
- W4362499066 hasConcept C153180895 @default.
- W4362499066 hasConcept C154945302 @default.
- W4362499066 hasConcept C22019652 @default.
- W4362499066 hasConcept C2776401178 @default.
- W4362499066 hasConcept C41008148 @default.
- W4362499066 hasConcept C41895202 @default.
- W4362499066 hasConcept C50644808 @default.
- W4362499066 hasConcept C52622490 @default.
- W4362499066 hasConcept C81363708 @default.
- W4362499066 hasConceptScore W4362499066C108583219 @default.
- W4362499066 hasConceptScore W4362499066C119857082 @default.
- W4362499066 hasConceptScore W4362499066C138885662 @default.
- W4362499066 hasConceptScore W4362499066C153180895 @default.
- W4362499066 hasConceptScore W4362499066C154945302 @default.
- W4362499066 hasConceptScore W4362499066C22019652 @default.
- W4362499066 hasConceptScore W4362499066C2776401178 @default.
- W4362499066 hasConceptScore W4362499066C41008148 @default.
- W4362499066 hasConceptScore W4362499066C41895202 @default.
- W4362499066 hasConceptScore W4362499066C50644808 @default.
- W4362499066 hasConceptScore W4362499066C52622490 @default.
- W4362499066 hasConceptScore W4362499066C81363708 @default.
- W4362499066 hasLocation W43624990661 @default.
- W4362499066 hasOpenAccess W4362499066 @default.
- W4362499066 hasPrimaryLocation W43624990661 @default.
- W4362499066 hasRelatedWork W2279398222 @default.
- W4362499066 hasRelatedWork W2767651786 @default.
- W4362499066 hasRelatedWork W3099765033 @default.
- W4362499066 hasRelatedWork W3156786002 @default.
- W4362499066 hasRelatedWork W4220996320 @default.
- W4362499066 hasRelatedWork W4283701629 @default.
- W4362499066 hasRelatedWork W4299822940 @default.
- W4362499066 hasRelatedWork W4362499066 @default.
- W4362499066 hasRelatedWork W4366492315 @default.
- W4362499066 hasRelatedWork W785854688 @default.
- W4362499066 isParatext "false" @default.
- W4362499066 isRetracted "false" @default.
- W4362499066 workType "article" @default.