Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362500668> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4362500668 endingPage "1143" @default.
- W4362500668 startingPage "1139" @default.
- W4362500668 abstract "Channel estimation (CE) is a critical part for intelligent reflecting surface (IRS) aided multi-user communication (MUC) systems. However, the cascaded channel of the IRS-aided MUC (IRS-MUC) is a complex multi-dimensional channel, which is difficult to estimate the precise channel matrix in practice. In this letter, we propose a dilated convolution and self-attention based neural network (DCSaNet) to handle the CE in the IRS-MUC system. Specifically, the dilated convolution block is used to improve the feature extraction for CE during the network training. Further, the weighed features are obtained by the self-attention block. Last, a lightweight model, DCSaNet-l is applied to reduce the network parameters for the practical IRS deployment. Experimental results show that the proposed DCSaNet can significantly lower the normalized mean square error (NMSE), accelerate the training speed under different SNR cases and different channel dimensions. The results also verify that the lightweight DCSaNet-l can reach a near optimal performance of the proposed DCSaNet, but further significantly reduce the parameter amount by more than 83.7%." @default.
- W4362500668 created "2023-04-05" @default.
- W4362500668 creator A5038886742 @default.
- W4362500668 creator A5041203002 @default.
- W4362500668 creator A5052913836 @default.
- W4362500668 creator A5080708818 @default.
- W4362500668 creator A5082151094 @default.
- W4362500668 creator A5091040593 @default.
- W4362500668 date "2023-07-01" @default.
- W4362500668 modified "2023-10-11" @default.
- W4362500668 title "DCSaNet: Dilated Convolution and Self-Attention-Based Neural Network for Channel Estimation in IRS-Aided Multi-User Communication System" @default.
- W4362500668 cites W2983315964 @default.
- W4362500668 cites W3010695123 @default.
- W4362500668 cites W3129486236 @default.
- W4362500668 cites W3161522428 @default.
- W4362500668 cites W3187692631 @default.
- W4362500668 cites W3204184545 @default.
- W4362500668 cites W3216227677 @default.
- W4362500668 cites W4210751617 @default.
- W4362500668 cites W4285158933 @default.
- W4362500668 doi "https://doi.org/10.1109/lwc.2023.3263836" @default.
- W4362500668 hasPublicationYear "2023" @default.
- W4362500668 type Work @default.
- W4362500668 citedByCount "0" @default.
- W4362500668 crossrefType "journal-article" @default.
- W4362500668 hasAuthorship W4362500668A5038886742 @default.
- W4362500668 hasAuthorship W4362500668A5041203002 @default.
- W4362500668 hasAuthorship W4362500668A5052913836 @default.
- W4362500668 hasAuthorship W4362500668A5080708818 @default.
- W4362500668 hasAuthorship W4362500668A5082151094 @default.
- W4362500668 hasAuthorship W4362500668A5091040593 @default.
- W4362500668 hasConcept C101765175 @default.
- W4362500668 hasConcept C105795698 @default.
- W4362500668 hasConcept C11413529 @default.
- W4362500668 hasConcept C127162648 @default.
- W4362500668 hasConcept C138885662 @default.
- W4362500668 hasConcept C139945424 @default.
- W4362500668 hasConcept C154945302 @default.
- W4362500668 hasConcept C2524010 @default.
- W4362500668 hasConcept C2776401178 @default.
- W4362500668 hasConcept C2777210771 @default.
- W4362500668 hasConcept C31258907 @default.
- W4362500668 hasConcept C33923547 @default.
- W4362500668 hasConcept C41008148 @default.
- W4362500668 hasConcept C41895202 @default.
- W4362500668 hasConcept C45347329 @default.
- W4362500668 hasConcept C50644808 @default.
- W4362500668 hasConceptScore W4362500668C101765175 @default.
- W4362500668 hasConceptScore W4362500668C105795698 @default.
- W4362500668 hasConceptScore W4362500668C11413529 @default.
- W4362500668 hasConceptScore W4362500668C127162648 @default.
- W4362500668 hasConceptScore W4362500668C138885662 @default.
- W4362500668 hasConceptScore W4362500668C139945424 @default.
- W4362500668 hasConceptScore W4362500668C154945302 @default.
- W4362500668 hasConceptScore W4362500668C2524010 @default.
- W4362500668 hasConceptScore W4362500668C2776401178 @default.
- W4362500668 hasConceptScore W4362500668C2777210771 @default.
- W4362500668 hasConceptScore W4362500668C31258907 @default.
- W4362500668 hasConceptScore W4362500668C33923547 @default.
- W4362500668 hasConceptScore W4362500668C41008148 @default.
- W4362500668 hasConceptScore W4362500668C41895202 @default.
- W4362500668 hasConceptScore W4362500668C45347329 @default.
- W4362500668 hasConceptScore W4362500668C50644808 @default.
- W4362500668 hasFunder F4320321001 @default.
- W4362500668 hasFunder F4320322725 @default.
- W4362500668 hasIssue "7" @default.
- W4362500668 hasLocation W43625006681 @default.
- W4362500668 hasOpenAccess W4362500668 @default.
- W4362500668 hasPrimaryLocation W43625006681 @default.
- W4362500668 hasRelatedWork W2102148524 @default.
- W4362500668 hasRelatedWork W2182785089 @default.
- W4362500668 hasRelatedWork W2372403409 @default.
- W4362500668 hasRelatedWork W2626189183 @default.
- W4362500668 hasRelatedWork W2977677679 @default.
- W4362500668 hasRelatedWork W3088721469 @default.
- W4362500668 hasRelatedWork W4226285110 @default.
- W4362500668 hasRelatedWork W4242726756 @default.
- W4362500668 hasRelatedWork W4312178642 @default.
- W4362500668 hasRelatedWork W4385074335 @default.
- W4362500668 hasVolume "12" @default.
- W4362500668 isParatext "false" @default.
- W4362500668 isRetracted "false" @default.
- W4362500668 workType "article" @default.