Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362501014> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4362501014 abstract "Alzheimer's disease (AD), a psychiatric problem, availing between those who are 65 and older. Additionally, the disease's steady development of a variety of visible and invisible symptoms, such as irritability and aggression, has a substantial negative impact on a patient's overall quality of life. Although many treatments have been developed to help reduce its symptoms, AD has no known cure. As a result, the field of AD management is growing, and a comprehensive framework for the early detection of AD must be created. In this study, we created three classification models for predicting AD using machine learning and five models for predicting AD using ensemble learning. SVM, DTs, and RF are the three basis classifiers employed in the current work. Five ensemble classifiers, XGBoost, Voting Classifier, Extra Trees (ETs) Classifier, Gradient Boost, and AdaBoost, are then thoroughly compared. After thoroughly inspecting the dataset for outliers or other noise, a feature selection method known as PCA and several preprocessing techniques are used to lessen the issue of overfitting and performance enhancement. Additionally, this study utilised the longitudinal information from the OASIS website, which included 150 patients overall, 72 of whom were not demented and 78 of whom were. The RF model, which had an accuracy of 83.92% compared to the other two base classifiers, provided the best classification performance, while the ETs Classifier, an ensemble classifier, performed the best when compared to base and ensemble classifiers, with an accuracy of 86.60%." @default.
- W4362501014 created "2023-04-05" @default.
- W4362501014 creator A5048113479 @default.
- W4362501014 creator A5048997380 @default.
- W4362501014 creator A5081667124 @default.
- W4362501014 date "2022-12-23" @default.
- W4362501014 modified "2023-09-30" @default.
- W4362501014 title "Comparative Analysis of Machine Learning and Ensemble Learning Classifiers for Alzheimer's Disease Detection" @default.
- W4362501014 doi "https://doi.org/10.1109/ccet56606.2022.10079958" @default.
- W4362501014 hasPublicationYear "2022" @default.
- W4362501014 type Work @default.
- W4362501014 citedByCount "0" @default.
- W4362501014 crossrefType "proceedings-article" @default.
- W4362501014 hasAuthorship W4362501014A5048113479 @default.
- W4362501014 hasAuthorship W4362501014A5048997380 @default.
- W4362501014 hasAuthorship W4362501014A5081667124 @default.
- W4362501014 hasBestOaLocation W43625010141 @default.
- W4362501014 hasConcept C106135958 @default.
- W4362501014 hasConcept C119857082 @default.
- W4362501014 hasConcept C12267149 @default.
- W4362501014 hasConcept C141404830 @default.
- W4362501014 hasConcept C148483581 @default.
- W4362501014 hasConcept C153180895 @default.
- W4362501014 hasConcept C154945302 @default.
- W4362501014 hasConcept C169258074 @default.
- W4362501014 hasConcept C22019652 @default.
- W4362501014 hasConcept C41008148 @default.
- W4362501014 hasConcept C45942800 @default.
- W4362501014 hasConcept C50644808 @default.
- W4362501014 hasConcept C95623464 @default.
- W4362501014 hasConceptScore W4362501014C106135958 @default.
- W4362501014 hasConceptScore W4362501014C119857082 @default.
- W4362501014 hasConceptScore W4362501014C12267149 @default.
- W4362501014 hasConceptScore W4362501014C141404830 @default.
- W4362501014 hasConceptScore W4362501014C148483581 @default.
- W4362501014 hasConceptScore W4362501014C153180895 @default.
- W4362501014 hasConceptScore W4362501014C154945302 @default.
- W4362501014 hasConceptScore W4362501014C169258074 @default.
- W4362501014 hasConceptScore W4362501014C22019652 @default.
- W4362501014 hasConceptScore W4362501014C41008148 @default.
- W4362501014 hasConceptScore W4362501014C45942800 @default.
- W4362501014 hasConceptScore W4362501014C50644808 @default.
- W4362501014 hasConceptScore W4362501014C95623464 @default.
- W4362501014 hasLocation W43625010141 @default.
- W4362501014 hasOpenAccess W4362501014 @default.
- W4362501014 hasPrimaryLocation W43625010141 @default.
- W4362501014 hasRelatedWork W2024806819 @default.
- W4362501014 hasRelatedWork W2140937121 @default.
- W4362501014 hasRelatedWork W2423455227 @default.
- W4362501014 hasRelatedWork W3166398490 @default.
- W4362501014 hasRelatedWork W4249229055 @default.
- W4362501014 hasRelatedWork W4292387718 @default.
- W4362501014 hasRelatedWork W4297499177 @default.
- W4362501014 hasRelatedWork W4312962200 @default.
- W4362501014 hasRelatedWork W4316087365 @default.
- W4362501014 hasRelatedWork W4360981792 @default.
- W4362501014 isParatext "false" @default.
- W4362501014 isRetracted "false" @default.
- W4362501014 workType "article" @default.