Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362506868> ?p ?o ?g. }
- W4362506868 endingPage "2240" @default.
- W4362506868 startingPage "2227" @default.
- W4362506868 abstract "Abstract Noise and artifacts affect strongly the quality of the electrocardiogram (ECG) in long-term ECG monitoring (LTM), making some of its parts impractical for diagnosis. The clinical severity of noise defines a qualitative quality score according to the manner clinicians make the interpretation of the ECG, in contrast to assess noise from a quantitative standpoint. So clinical noise refers to a scale of different levels of qualitative severity of noise which aims at elucidating which ECG fragments are valid to achieve diagnosis from a clinical point of view, unlike the traditional approach, which assesses noise in terms of quantitative severity. This work proposes the use of machine learning (ML) techniques to categorize different qualitative noise severity using a database annotated according to a clinical noise taxonomy as gold standard. A comparative study is carried out using five representative ML methods, namely, K neareast neighbors, decision trees, support vector machine, single-layer perceptron, and random forest. The models are fed by signal quality indexes characterizing the waveform in time and frequency domains, as well as from a statistical viewpoint, to distinguish between clinically valid ECG segments from invalid ones. A solid methodology to prevent overfitting to both the dataset and the patient is developed, taking into account balance of classes, patient separation, and patient rotation in the test set. All the proposed learning systems have demonstrated good classification performance, attaining a recall, precision, and F1 score up to 0.78, 0.80, and 0.77, respectively, in the test set by a single-layer perceptron approach. These systems provide a classification solution for assessing the clinical quality of the ECG taken from LTM recordings." @default.
- W4362506868 created "2023-04-05" @default.
- W4362506868 creator A5006288896 @default.
- W4362506868 creator A5017148634 @default.
- W4362506868 creator A5037372511 @default.
- W4362506868 creator A5075311997 @default.
- W4362506868 date "2023-04-03" @default.
- W4362506868 modified "2023-10-18" @default.
- W4362506868 title "Characterization of noise in long-term ECG monitoring with machine learning based on clinical criteria" @default.
- W4362506868 cites W1482688465 @default.
- W4362506868 cites W1909332241 @default.
- W4362506868 cites W1966986942 @default.
- W4362506868 cites W1977938653 @default.
- W4362506868 cites W2015242484 @default.
- W4362506868 cites W2049755262 @default.
- W4362506868 cites W2052232835 @default.
- W4362506868 cites W2055741845 @default.
- W4362506868 cites W2088720900 @default.
- W4362506868 cites W2122930900 @default.
- W4362506868 cites W2142827986 @default.
- W4362506868 cites W2149705008 @default.
- W4362506868 cites W2150305507 @default.
- W4362506868 cites W2162800060 @default.
- W4362506868 cites W2165690797 @default.
- W4362506868 cites W2251133041 @default.
- W4362506868 cites W2316075464 @default.
- W4362506868 cites W2323406062 @default.
- W4362506868 cites W2581221175 @default.
- W4362506868 cites W2593444714 @default.
- W4362506868 cites W2597701414 @default.
- W4362506868 cites W2625736062 @default.
- W4362506868 cites W2766347359 @default.
- W4362506868 cites W2787894218 @default.
- W4362506868 cites W2791450091 @default.
- W4362506868 cites W2806149022 @default.
- W4362506868 cites W2911964244 @default.
- W4362506868 cites W2945801048 @default.
- W4362506868 cites W2969925260 @default.
- W4362506868 cites W2999309192 @default.
- W4362506868 cites W3115197326 @default.
- W4362506868 cites W3194244110 @default.
- W4362506868 cites W3196013404 @default.
- W4362506868 cites W3211634390 @default.
- W4362506868 cites W4285176381 @default.
- W4362506868 doi "https://doi.org/10.1007/s11517-023-02802-5" @default.
- W4362506868 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37010711" @default.
- W4362506868 hasPublicationYear "2023" @default.
- W4362506868 type Work @default.
- W4362506868 citedByCount "1" @default.
- W4362506868 countsByYear W43625068682023 @default.
- W4362506868 crossrefType "journal-article" @default.
- W4362506868 hasAuthorship W4362506868A5006288896 @default.
- W4362506868 hasAuthorship W4362506868A5017148634 @default.
- W4362506868 hasAuthorship W4362506868A5037372511 @default.
- W4362506868 hasAuthorship W4362506868A5075311997 @default.
- W4362506868 hasBestOaLocation W43625068681 @default.
- W4362506868 hasConcept C115961682 @default.
- W4362506868 hasConcept C119857082 @default.
- W4362506868 hasConcept C12267149 @default.
- W4362506868 hasConcept C124101348 @default.
- W4362506868 hasConcept C153180895 @default.
- W4362506868 hasConcept C154945302 @default.
- W4362506868 hasConcept C169258074 @default.
- W4362506868 hasConcept C169903167 @default.
- W4362506868 hasConcept C22019652 @default.
- W4362506868 hasConcept C41008148 @default.
- W4362506868 hasConcept C50644808 @default.
- W4362506868 hasConcept C60908668 @default.
- W4362506868 hasConcept C94124525 @default.
- W4362506868 hasConcept C99498987 @default.
- W4362506868 hasConceptScore W4362506868C115961682 @default.
- W4362506868 hasConceptScore W4362506868C119857082 @default.
- W4362506868 hasConceptScore W4362506868C12267149 @default.
- W4362506868 hasConceptScore W4362506868C124101348 @default.
- W4362506868 hasConceptScore W4362506868C153180895 @default.
- W4362506868 hasConceptScore W4362506868C154945302 @default.
- W4362506868 hasConceptScore W4362506868C169258074 @default.
- W4362506868 hasConceptScore W4362506868C169903167 @default.
- W4362506868 hasConceptScore W4362506868C22019652 @default.
- W4362506868 hasConceptScore W4362506868C41008148 @default.
- W4362506868 hasConceptScore W4362506868C50644808 @default.
- W4362506868 hasConceptScore W4362506868C60908668 @default.
- W4362506868 hasConceptScore W4362506868C94124525 @default.
- W4362506868 hasConceptScore W4362506868C99498987 @default.
- W4362506868 hasFunder F4320313831 @default.
- W4362506868 hasFunder F4320323755 @default.
- W4362506868 hasIssue "9" @default.
- W4362506868 hasLocation W43625068681 @default.
- W4362506868 hasLocation W43625068682 @default.
- W4362506868 hasOpenAccess W4362506868 @default.
- W4362506868 hasPrimaryLocation W43625068681 @default.
- W4362506868 hasRelatedWork W1996541855 @default.
- W4362506868 hasRelatedWork W2003998164 @default.
- W4362506868 hasRelatedWork W2940336242 @default.
- W4362506868 hasRelatedWork W2989932438 @default.
- W4362506868 hasRelatedWork W3099765033 @default.
- W4362506868 hasRelatedWork W3128603827 @default.
- W4362506868 hasRelatedWork W3168994312 @default.