Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362510163> ?p ?o ?g. }
- W4362510163 endingPage "102642" @default.
- W4362510163 startingPage "102642" @default.
- W4362510163 abstract "This paper examines the efficiency and asymmetric multifractal features of NFTs, DeFi, cryptocurrencies, and traditional assets using Asymmetric Multifractal Cross-Correlations Analysis covering the period from November 2017 to February 2022. Considering the full sample with a significant variation among asset classes, the study reveals DeFi-DigiByte is the most efficient while the cryptocurrency-Tether is the least efficient. However, S&P 500 showed high efficiency before COVID-19, and DeFi-Enjin Coin advanced as the most efficient asset during COVID-19. The volatility dynamics of NFTs, DeFi, and cryptocurrencies follow strong nonlinear cross-correlations, but evidence of weaker nonlinearity exists in traditional assets. Additionally, the sensitivity to smaller events in bull markets is high for NFTs and DeFi. The findings have significant implications for portfolio diversification when an investor's portfolio set includes traditional assets and cryptocurrency and relatively new blockchain-based assets like NFTs and DeFi." @default.
- W4362510163 created "2023-04-06" @default.
- W4362510163 creator A5016513993 @default.
- W4362510163 creator A5032687173 @default.
- W4362510163 creator A5047331779 @default.
- W4362510163 creator A5053034159 @default.
- W4362510163 creator A5055985047 @default.
- W4362510163 date "2023-05-01" @default.
- W4362510163 modified "2023-10-16" @default.
- W4362510163 title "NFTs, DeFi, and other assets efficiency and volatility dynamics: An asymmetric multifractality analysis" @default.
- W4362510163 cites W1999996900 @default.
- W4362510163 cites W2003677026 @default.
- W4362510163 cites W2013109882 @default.
- W4362510163 cites W2017821362 @default.
- W4362510163 cites W2061160212 @default.
- W4362510163 cites W2071602085 @default.
- W4362510163 cites W2090537454 @default.
- W4362510163 cites W2145140171 @default.
- W4362510163 cites W2313404644 @default.
- W4362510163 cites W2341760625 @default.
- W4362510163 cites W2523675164 @default.
- W4362510163 cites W2590218058 @default.
- W4362510163 cites W2790483384 @default.
- W4362510163 cites W2793264542 @default.
- W4362510163 cites W2797489128 @default.
- W4362510163 cites W2908230480 @default.
- W4362510163 cites W2935912253 @default.
- W4362510163 cites W2947654456 @default.
- W4362510163 cites W3100340568 @default.
- W4362510163 cites W3107709904 @default.
- W4362510163 cites W3115060146 @default.
- W4362510163 cites W3127496170 @default.
- W4362510163 cites W3163260754 @default.
- W4362510163 cites W3170097269 @default.
- W4362510163 cites W4205731913 @default.
- W4362510163 cites W4207056440 @default.
- W4362510163 cites W4211056313 @default.
- W4362510163 cites W4220656131 @default.
- W4362510163 cites W4220790190 @default.
- W4362510163 cites W4220905311 @default.
- W4362510163 cites W4231546411 @default.
- W4362510163 cites W4286566962 @default.
- W4362510163 cites W4294989739 @default.
- W4362510163 cites W4297225172 @default.
- W4362510163 cites W4309777431 @default.
- W4362510163 cites W4361208059 @default.
- W4362510163 doi "https://doi.org/10.1016/j.irfa.2023.102642" @default.
- W4362510163 hasPublicationYear "2023" @default.
- W4362510163 type Work @default.
- W4362510163 citedByCount "6" @default.
- W4362510163 countsByYear W43625101632023 @default.
- W4362510163 crossrefType "journal-article" @default.
- W4362510163 hasAuthorship W4362510163A5016513993 @default.
- W4362510163 hasAuthorship W4362510163A5032687173 @default.
- W4362510163 hasAuthorship W4362510163A5047331779 @default.
- W4362510163 hasAuthorship W4362510163A5053034159 @default.
- W4362510163 hasAuthorship W4362510163A5055985047 @default.
- W4362510163 hasBestOaLocation W43625101631 @default.
- W4362510163 hasConcept C106159729 @default.
- W4362510163 hasConcept C133905733 @default.
- W4362510163 hasConcept C134306372 @default.
- W4362510163 hasConcept C144133560 @default.
- W4362510163 hasConcept C149782125 @default.
- W4362510163 hasConcept C162324750 @default.
- W4362510163 hasConcept C162853370 @default.
- W4362510163 hasConcept C180706569 @default.
- W4362510163 hasConcept C180916674 @default.
- W4362510163 hasConcept C2780821815 @default.
- W4362510163 hasConcept C33923547 @default.
- W4362510163 hasConcept C38652104 @default.
- W4362510163 hasConcept C40636538 @default.
- W4362510163 hasConcept C41008148 @default.
- W4362510163 hasConcept C91602232 @default.
- W4362510163 hasConceptScore W4362510163C106159729 @default.
- W4362510163 hasConceptScore W4362510163C133905733 @default.
- W4362510163 hasConceptScore W4362510163C134306372 @default.
- W4362510163 hasConceptScore W4362510163C144133560 @default.
- W4362510163 hasConceptScore W4362510163C149782125 @default.
- W4362510163 hasConceptScore W4362510163C162324750 @default.
- W4362510163 hasConceptScore W4362510163C162853370 @default.
- W4362510163 hasConceptScore W4362510163C180706569 @default.
- W4362510163 hasConceptScore W4362510163C180916674 @default.
- W4362510163 hasConceptScore W4362510163C2780821815 @default.
- W4362510163 hasConceptScore W4362510163C33923547 @default.
- W4362510163 hasConceptScore W4362510163C38652104 @default.
- W4362510163 hasConceptScore W4362510163C40636538 @default.
- W4362510163 hasConceptScore W4362510163C41008148 @default.
- W4362510163 hasConceptScore W4362510163C91602232 @default.
- W4362510163 hasFunder F4320321001 @default.
- W4362510163 hasLocation W43625101631 @default.
- W4362510163 hasOpenAccess W4362510163 @default.
- W4362510163 hasPrimaryLocation W43625101631 @default.
- W4362510163 hasRelatedWork W2479414348 @default.
- W4362510163 hasRelatedWork W2907143025 @default.
- W4362510163 hasRelatedWork W2915579847 @default.
- W4362510163 hasRelatedWork W2948261066 @default.
- W4362510163 hasRelatedWork W3123387860 @default.
- W4362510163 hasRelatedWork W3164717803 @default.