Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362511808> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4362511808 endingPage "3845" @default.
- W4362511808 startingPage "3831" @default.
- W4362511808 abstract "Nowadays, smart healthcare and biomedical research have marked a substantial growth rate in terms of their presence in the literature, computational approaches, and discoveries, owing to which a massive quantity of experimental datasets was published and generated (Big Data) for describing and validating such novelties. Drug-drug interaction (DDI) significantly contributed to drug administration and development. It continues as the main obstacle in offering inexpensive and safe healthcare. It normally happens for patients with extensive medication, leading them to take many drugs simultaneously. DDI may cause side effects, either mild or severe health problems. This reduced victims’ quality of life and increased hospital healthcare expenses by increasing their recovery time. Several efforts were made to formulate new methods for DDI prediction to overcome this issue. In this aspect, this study designs a new Spotted Hyena Optimizer Driven Deep Learning based Drug-Drug Interaction Prediction (SHODL-DDIP) model in a big data environment. In the presented SHODL-DDIP technique, the relativity and characteristics of the drugs can be identified from different sources for prediction. The input data is preprocessed at the primary level to improve its quality. Next, the salp swarm optimization algorithm (SSO) is used to select features. In this study, the deep belief network (DBN) model is exploited to predict the DDI accurately. The SHO algorithm is involved in improvising the DBN model’s predictive outcomes, showing the novelty of the work. The experimental result analysis of the SHODL-DDIP technique is tested using drug databases, and the results signified the improvements of the SHODL-DDIP technique over other recent models in terms of different performance measures." @default.
- W4362511808 created "2023-04-06" @default.
- W4362511808 creator A5013214388 @default.
- W4362511808 creator A5041400768 @default.
- W4362511808 creator A5077164831 @default.
- W4362511808 creator A5087996799 @default.
- W4362511808 date "2023-01-01" @default.
- W4362511808 modified "2023-10-10" @default.
- W4362511808 title "Spotted Hyena Optimizer Driven Deep Learning-Based Drug-Drug Interaction Prediction in Big Data Environment" @default.
- W4362511808 doi "https://doi.org/10.32604/csse.2023.037580" @default.
- W4362511808 hasPublicationYear "2023" @default.
- W4362511808 type Work @default.
- W4362511808 citedByCount "0" @default.
- W4362511808 crossrefType "journal-article" @default.
- W4362511808 hasAuthorship W4362511808A5013214388 @default.
- W4362511808 hasAuthorship W4362511808A5041400768 @default.
- W4362511808 hasAuthorship W4362511808A5077164831 @default.
- W4362511808 hasAuthorship W4362511808A5087996799 @default.
- W4362511808 hasBestOaLocation W43625118081 @default.
- W4362511808 hasConcept C108583219 @default.
- W4362511808 hasConcept C111472728 @default.
- W4362511808 hasConcept C119857082 @default.
- W4362511808 hasConcept C124101348 @default.
- W4362511808 hasConcept C138885662 @default.
- W4362511808 hasConcept C154945302 @default.
- W4362511808 hasConcept C15744967 @default.
- W4362511808 hasConcept C160735492 @default.
- W4362511808 hasConcept C162324750 @default.
- W4362511808 hasConcept C17744445 @default.
- W4362511808 hasConcept C18903297 @default.
- W4362511808 hasConcept C199539241 @default.
- W4362511808 hasConcept C2522767166 @default.
- W4362511808 hasConcept C2776650193 @default.
- W4362511808 hasConcept C2778738651 @default.
- W4362511808 hasConcept C2779530757 @default.
- W4362511808 hasConcept C2779682765 @default.
- W4362511808 hasConcept C2780035454 @default.
- W4362511808 hasConcept C41008148 @default.
- W4362511808 hasConcept C50522688 @default.
- W4362511808 hasConcept C71924100 @default.
- W4362511808 hasConcept C75684735 @default.
- W4362511808 hasConcept C77805123 @default.
- W4362511808 hasConcept C86803240 @default.
- W4362511808 hasConcept C97385483 @default.
- W4362511808 hasConcept C98274493 @default.
- W4362511808 hasConceptScore W4362511808C108583219 @default.
- W4362511808 hasConceptScore W4362511808C111472728 @default.
- W4362511808 hasConceptScore W4362511808C119857082 @default.
- W4362511808 hasConceptScore W4362511808C124101348 @default.
- W4362511808 hasConceptScore W4362511808C138885662 @default.
- W4362511808 hasConceptScore W4362511808C154945302 @default.
- W4362511808 hasConceptScore W4362511808C15744967 @default.
- W4362511808 hasConceptScore W4362511808C160735492 @default.
- W4362511808 hasConceptScore W4362511808C162324750 @default.
- W4362511808 hasConceptScore W4362511808C17744445 @default.
- W4362511808 hasConceptScore W4362511808C18903297 @default.
- W4362511808 hasConceptScore W4362511808C199539241 @default.
- W4362511808 hasConceptScore W4362511808C2522767166 @default.
- W4362511808 hasConceptScore W4362511808C2776650193 @default.
- W4362511808 hasConceptScore W4362511808C2778738651 @default.
- W4362511808 hasConceptScore W4362511808C2779530757 @default.
- W4362511808 hasConceptScore W4362511808C2779682765 @default.
- W4362511808 hasConceptScore W4362511808C2780035454 @default.
- W4362511808 hasConceptScore W4362511808C41008148 @default.
- W4362511808 hasConceptScore W4362511808C50522688 @default.
- W4362511808 hasConceptScore W4362511808C71924100 @default.
- W4362511808 hasConceptScore W4362511808C75684735 @default.
- W4362511808 hasConceptScore W4362511808C77805123 @default.
- W4362511808 hasConceptScore W4362511808C86803240 @default.
- W4362511808 hasConceptScore W4362511808C97385483 @default.
- W4362511808 hasConceptScore W4362511808C98274493 @default.
- W4362511808 hasIssue "3" @default.
- W4362511808 hasLocation W43625118081 @default.
- W4362511808 hasOpenAccess W4362511808 @default.
- W4362511808 hasPrimaryLocation W43625118081 @default.
- W4362511808 hasRelatedWork W2567271240 @default.
- W4362511808 hasRelatedWork W2741836081 @default.
- W4362511808 hasRelatedWork W2919358988 @default.
- W4362511808 hasRelatedWork W2991591812 @default.
- W4362511808 hasRelatedWork W3014300295 @default.
- W4362511808 hasRelatedWork W3082895349 @default.
- W4362511808 hasRelatedWork W3123344745 @default.
- W4362511808 hasRelatedWork W3189515467 @default.
- W4362511808 hasRelatedWork W3196183652 @default.
- W4362511808 hasRelatedWork W4293567684 @default.
- W4362511808 hasVolume "46" @default.
- W4362511808 isParatext "false" @default.
- W4362511808 isRetracted "false" @default.
- W4362511808 workType "article" @default.