Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362521896> ?p ?o ?g. }
- W4362521896 abstract "Abstract Background Falls in older people are common and morbid. Prediction models can help identifying individuals at higher fall risk. Electronic health records (EHR) offer an opportunity to develop automated prediction tools that may help to identify fall-prone individuals and lower clinical workload. However, existing models primarily utilise structured EHR data and neglect information in unstructured data. Using machine learning and natural language processing (NLP), we aimed to examine the predictive performance provided by unstructured clinical notes, and their incremental performance over structured data to predict falls. Methods We used primary care EHR data of people aged 65 or over. We developed three logistic regression models using the least absolute shrinkage and selection operator: one using structured clinical variables (Baseline), one with topics extracted from unstructured clinical notes (Topic-based) and one by adding clinical variables to the extracted topics (Combi). Model performance was assessed in terms of discrimination using the area under the receiver operating characteristic curve (AUC), and calibration by calibration plots. We used 10-fold cross-validation to validate the approach. Results Data of 35,357 individuals were analysed, of which 4,734 experienced falls. Our NLP topic modelling technique discovered 151 topics from the unstructured clinical notes. AUCs and 95% confidence intervals of the Baseline, Topic-based and Combi models were 0.709 (0.700–0.719), 0.685 (0.676–0.694) and 0.718 (0.708–0.727), respectively. All the models showed good calibration. Conclusions Unstructured clinical notes are an additional viable data source to develop and improve prediction models for falls compared to traditional prediction models, but the clinical relevance remains limited." @default.
- W4362521896 created "2023-04-06" @default.
- W4362521896 creator A5004648901 @default.
- W4362521896 creator A5029033435 @default.
- W4362521896 creator A5042278568 @default.
- W4362521896 creator A5049808963 @default.
- W4362521896 creator A5054932985 @default.
- W4362521896 creator A5062559109 @default.
- W4362521896 creator A5075388940 @default.
- W4362521896 date "2023-04-01" @default.
- W4362521896 modified "2023-09-23" @default.
- W4362521896 title "Predicting future falls in older people using natural language processing of general practitioners’ clinical notes" @default.
- W4362521896 cites W1550534467 @default.
- W4362521896 cites W1577040311 @default.
- W4362521896 cites W1967945537 @default.
- W4362521896 cites W1987973071 @default.
- W4362521896 cites W2006802565 @default.
- W4362521896 cites W2030498706 @default.
- W4362521896 cites W2060762518 @default.
- W4362521896 cites W2063886039 @default.
- W4362521896 cites W2080269570 @default.
- W4362521896 cites W2081955728 @default.
- W4362521896 cites W2116178519 @default.
- W4362521896 cites W2159261453 @default.
- W4362521896 cites W2165063549 @default.
- W4362521896 cites W2180216841 @default.
- W4362521896 cites W2328176404 @default.
- W4362521896 cites W2395172628 @default.
- W4362521896 cites W2537052583 @default.
- W4362521896 cites W2735580341 @default.
- W4362521896 cites W2791545742 @default.
- W4362521896 cites W2809705582 @default.
- W4362521896 cites W2890417290 @default.
- W4362521896 cites W2896308839 @default.
- W4362521896 cites W2921459696 @default.
- W4362521896 cites W2950509749 @default.
- W4362521896 cites W3010369769 @default.
- W4362521896 cites W3041395126 @default.
- W4362521896 cites W3083804794 @default.
- W4362521896 cites W3124926562 @default.
- W4362521896 cites W3136458326 @default.
- W4362521896 cites W3159174648 @default.
- W4362521896 cites W3164278202 @default.
- W4362521896 cites W3206064374 @default.
- W4362521896 cites W4200152973 @default.
- W4362521896 cites W4200588638 @default.
- W4362521896 cites W4221109207 @default.
- W4362521896 cites W4225143126 @default.
- W4362521896 cites W4225493996 @default.
- W4362521896 cites W4226030515 @default.
- W4362521896 doi "https://doi.org/10.1093/ageing/afad046" @default.
- W4362521896 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37014000" @default.
- W4362521896 hasPublicationYear "2023" @default.
- W4362521896 type Work @default.
- W4362521896 citedByCount "1" @default.
- W4362521896 countsByYear W43625218962023 @default.
- W4362521896 crossrefType "journal-article" @default.
- W4362521896 hasAuthorship W4362521896A5004648901 @default.
- W4362521896 hasAuthorship W4362521896A5029033435 @default.
- W4362521896 hasAuthorship W4362521896A5042278568 @default.
- W4362521896 hasAuthorship W4362521896A5049808963 @default.
- W4362521896 hasAuthorship W4362521896A5054932985 @default.
- W4362521896 hasAuthorship W4362521896A5062559109 @default.
- W4362521896 hasAuthorship W4362521896A5075388940 @default.
- W4362521896 hasBestOaLocation W43625218961 @default.
- W4362521896 hasConcept C105795698 @default.
- W4362521896 hasConcept C111919701 @default.
- W4362521896 hasConcept C119857082 @default.
- W4362521896 hasConcept C124101348 @default.
- W4362521896 hasConcept C126322002 @default.
- W4362521896 hasConcept C151956035 @default.
- W4362521896 hasConcept C154945302 @default.
- W4362521896 hasConcept C165838908 @default.
- W4362521896 hasConcept C204321447 @default.
- W4362521896 hasConcept C2778476105 @default.
- W4362521896 hasConcept C2781252014 @default.
- W4362521896 hasConcept C33923547 @default.
- W4362521896 hasConcept C41008148 @default.
- W4362521896 hasConcept C44249647 @default.
- W4362521896 hasConcept C45804977 @default.
- W4362521896 hasConcept C58471807 @default.
- W4362521896 hasConcept C71924100 @default.
- W4362521896 hasConcept C75684735 @default.
- W4362521896 hasConceptScore W4362521896C105795698 @default.
- W4362521896 hasConceptScore W4362521896C111919701 @default.
- W4362521896 hasConceptScore W4362521896C119857082 @default.
- W4362521896 hasConceptScore W4362521896C124101348 @default.
- W4362521896 hasConceptScore W4362521896C126322002 @default.
- W4362521896 hasConceptScore W4362521896C151956035 @default.
- W4362521896 hasConceptScore W4362521896C154945302 @default.
- W4362521896 hasConceptScore W4362521896C165838908 @default.
- W4362521896 hasConceptScore W4362521896C204321447 @default.
- W4362521896 hasConceptScore W4362521896C2778476105 @default.
- W4362521896 hasConceptScore W4362521896C2781252014 @default.
- W4362521896 hasConceptScore W4362521896C33923547 @default.
- W4362521896 hasConceptScore W4362521896C41008148 @default.
- W4362521896 hasConceptScore W4362521896C44249647 @default.
- W4362521896 hasConceptScore W4362521896C45804977 @default.
- W4362521896 hasConceptScore W4362521896C58471807 @default.
- W4362521896 hasConceptScore W4362521896C71924100 @default.