Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362522906> ?p ?o ?g. }
- W4362522906 abstract "The rapid identification of pathogenic microorganism serotypes is still a bottleneck problem to be solved urgently. Compared with proteomics technology, metabolomics technology is directly related to phenotypes and has higher specificity in identifying pathogenic microorganism serotypes. Our study combines pseudotargeted metabolomics with deep learning techniques to obtain a new deep semiquantitative fingerprinting method for Listeria monocytogenes identification at the serotype levels. We prescreened 396 features with orthogonal partial least-squares discrimination analysis (OPLS-DA), and 200 features were selected for deep learning model building. A residual learning framework for L. monocytogenes identification was established. There were 256 convolutional filters in the initial convolution layer, and each hidden layer contained 128 filters. The total depth included seven layers, consisting of an initial convolution layer, a residual layer, and two final fully connected classification layers, with each residual layer containing four convolutional layers. In addition, transfer learning was used to predict new isolates that did not participate in model training to verify the method's feasibility. Finally, we achieved prediction accuracies of L. monocytogenes at the serotype level exceeding 99%. The prediction accuracy of the new strain validation set was greater than 97%, further demonstrating the feasibility of this method. Therefore, this technology will be a powerful tool for the rapid and accurate identification of pathogens." @default.
- W4362522906 created "2023-04-06" @default.
- W4362522906 creator A5002877468 @default.
- W4362522906 creator A5008276516 @default.
- W4362522906 creator A5014327572 @default.
- W4362522906 creator A5018026066 @default.
- W4362522906 creator A5038824326 @default.
- W4362522906 creator A5051778432 @default.
- W4362522906 creator A5059606282 @default.
- W4362522906 creator A5062454455 @default.
- W4362522906 creator A5064470266 @default.
- W4362522906 creator A5075909798 @default.
- W4362522906 creator A5076675346 @default.
- W4362522906 creator A5080455599 @default.
- W4362522906 creator A5086631373 @default.
- W4362522906 date "2023-04-04" @default.
- W4362522906 modified "2023-09-27" @default.
- W4362522906 title "Semiquantitative Fingerprinting Based on Pseudotargeted Metabolomics and Deep Learning for the Identification of <i>Listeria monocytogenes</i> and Its Major Serotypes" @default.
- W4362522906 cites W1493357981 @default.
- W4362522906 cites W1501213224 @default.
- W4362522906 cites W2105267960 @default.
- W4362522906 cites W2130755203 @default.
- W4362522906 cites W2140247278 @default.
- W4362522906 cites W2141090745 @default.
- W4362522906 cites W2194775991 @default.
- W4362522906 cites W2327371542 @default.
- W4362522906 cites W2353526782 @default.
- W4362522906 cites W2402658095 @default.
- W4362522906 cites W2467662986 @default.
- W4362522906 cites W2504450701 @default.
- W4362522906 cites W2608209613 @default.
- W4362522906 cites W2621659646 @default.
- W4362522906 cites W2753868484 @default.
- W4362522906 cites W2770533345 @default.
- W4362522906 cites W2770899020 @default.
- W4362522906 cites W2789986773 @default.
- W4362522906 cites W2803144214 @default.
- W4362522906 cites W2884665638 @default.
- W4362522906 cites W2911514609 @default.
- W4362522906 cites W2975190528 @default.
- W4362522906 cites W2975531885 @default.
- W4362522906 cites W2982482221 @default.
- W4362522906 cites W2990623796 @default.
- W4362522906 cites W2991065675 @default.
- W4362522906 cites W2997740190 @default.
- W4362522906 cites W3010956621 @default.
- W4362522906 cites W3037210404 @default.
- W4362522906 cites W3037865744 @default.
- W4362522906 cites W3089305416 @default.
- W4362522906 cites W3093633048 @default.
- W4362522906 cites W3109688119 @default.
- W4362522906 cites W3130547033 @default.
- W4362522906 cites W3133844749 @default.
- W4362522906 cites W3135351475 @default.
- W4362522906 cites W4211085285 @default.
- W4362522906 cites W4220816560 @default.
- W4362522906 cites W4224031304 @default.
- W4362522906 cites W4224657315 @default.
- W4362522906 cites W4225125883 @default.
- W4362522906 cites W4313399345 @default.
- W4362522906 cites W992136934 @default.
- W4362522906 doi "https://doi.org/10.1021/acs.analchem.2c02554" @default.
- W4362522906 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37014709" @default.
- W4362522906 hasPublicationYear "2023" @default.
- W4362522906 type Work @default.
- W4362522906 citedByCount "0" @default.
- W4362522906 crossrefType "journal-article" @default.
- W4362522906 hasAuthorship W4362522906A5002877468 @default.
- W4362522906 hasAuthorship W4362522906A5008276516 @default.
- W4362522906 hasAuthorship W4362522906A5014327572 @default.
- W4362522906 hasAuthorship W4362522906A5018026066 @default.
- W4362522906 hasAuthorship W4362522906A5038824326 @default.
- W4362522906 hasAuthorship W4362522906A5051778432 @default.
- W4362522906 hasAuthorship W4362522906A5059606282 @default.
- W4362522906 hasAuthorship W4362522906A5062454455 @default.
- W4362522906 hasAuthorship W4362522906A5064470266 @default.
- W4362522906 hasAuthorship W4362522906A5075909798 @default.
- W4362522906 hasAuthorship W4362522906A5076675346 @default.
- W4362522906 hasAuthorship W4362522906A5080455599 @default.
- W4362522906 hasAuthorship W4362522906A5086631373 @default.
- W4362522906 hasConcept C10389963 @default.
- W4362522906 hasConcept C108583219 @default.
- W4362522906 hasConcept C11413529 @default.
- W4362522906 hasConcept C116834253 @default.
- W4362522906 hasConcept C153180895 @default.
- W4362522906 hasConcept C154945302 @default.
- W4362522906 hasConcept C155512373 @default.
- W4362522906 hasConcept C185592680 @default.
- W4362522906 hasConcept C2781350384 @default.
- W4362522906 hasConcept C41008148 @default.
- W4362522906 hasConcept C523546767 @default.
- W4362522906 hasConcept C54355233 @default.
- W4362522906 hasConcept C59822182 @default.
- W4362522906 hasConcept C70721500 @default.
- W4362522906 hasConcept C86803240 @default.
- W4362522906 hasConcept C89423630 @default.
- W4362522906 hasConceptScore W4362522906C10389963 @default.
- W4362522906 hasConceptScore W4362522906C108583219 @default.
- W4362522906 hasConceptScore W4362522906C11413529 @default.
- W4362522906 hasConceptScore W4362522906C116834253 @default.