Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362544900> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4362544900 abstract "In today's environment, a reliable and effective technique for identifying spam reviews is essential if you want to purchase things online without being taken advantage of. There are possibilities for publishing reviews in many internet locations, which opens the door for sponsored or deceptive fake reviews. These fabricated evaluations may mislead the general audience and leave them unsure of whether or not to believe them. The issue of spam review finding has been solved by the introduction of prominent deep literacy methods. The focus of recent research has been on supervised literacy practices that contain labelled data, which is inadequate for online review. This initiative aims to expose any dishonest textbook reviews. To do this, we've used both labelled and unlabeled data and suggested deep learning techniques for spam review detection, including Multi-Layer Perceptron (MLP), Convolutional Neural Networks (CNN), and a Long Short-Term Memory (LSTM) variation of Recurrent Neural Networks (RNN). We also used standard machine learning classifiers to identify spam reviews, including Naive Bayes (NB), K Nearest Neighbor (KNN), and Support Vector Machine (SVM). Finally, we compared the effectiveness of traditional and deep literacy classifiers. We'll use deep literacy classifiers to boost the finesse and efficiency." @default.
- W4362544900 created "2023-04-06" @default.
- W4362544900 creator A5014777605 @default.
- W4362544900 creator A5017269928 @default.
- W4362544900 creator A5046244257 @default.
- W4362544900 creator A5068119268 @default.
- W4362544900 creator A5070318017 @default.
- W4362544900 creator A5071152267 @default.
- W4362544900 date "2023-02-23" @default.
- W4362544900 modified "2023-09-25" @default.
- W4362544900 title "Applying Deep Learning Methods on Spam Review Detection" @default.
- W4362544900 cites W2346875348 @default.
- W4362544900 cites W2589659819 @default.
- W4362544900 cites W2604992511 @default.
- W4362544900 cites W2618063639 @default.
- W4362544900 cites W2766492142 @default.
- W4362544900 cites W2774483990 @default.
- W4362544900 cites W2779032996 @default.
- W4362544900 cites W2795296342 @default.
- W4362544900 cites W2803549048 @default.
- W4362544900 cites W2808332184 @default.
- W4362544900 cites W2812053664 @default.
- W4362544900 cites W2913553601 @default.
- W4362544900 cites W2921297172 @default.
- W4362544900 cites W2921404976 @default.
- W4362544900 cites W2933688539 @default.
- W4362544900 doi "https://doi.org/10.1109/iccmc56507.2023.10083900" @default.
- W4362544900 hasPublicationYear "2023" @default.
- W4362544900 type Work @default.
- W4362544900 citedByCount "0" @default.
- W4362544900 crossrefType "proceedings-article" @default.
- W4362544900 hasAuthorship W4362544900A5014777605 @default.
- W4362544900 hasAuthorship W4362544900A5017269928 @default.
- W4362544900 hasAuthorship W4362544900A5046244257 @default.
- W4362544900 hasAuthorship W4362544900A5068119268 @default.
- W4362544900 hasAuthorship W4362544900A5070318017 @default.
- W4362544900 hasAuthorship W4362544900A5071152267 @default.
- W4362544900 hasConcept C108583219 @default.
- W4362544900 hasConcept C110875604 @default.
- W4362544900 hasConcept C119857082 @default.
- W4362544900 hasConcept C120665830 @default.
- W4362544900 hasConcept C121332964 @default.
- W4362544900 hasConcept C12267149 @default.
- W4362544900 hasConcept C136764020 @default.
- W4362544900 hasConcept C154945302 @default.
- W4362544900 hasConcept C192209626 @default.
- W4362544900 hasConcept C41008148 @default.
- W4362544900 hasConcept C50644808 @default.
- W4362544900 hasConcept C52001869 @default.
- W4362544900 hasConcept C60908668 @default.
- W4362544900 hasConcept C81363708 @default.
- W4362544900 hasConceptScore W4362544900C108583219 @default.
- W4362544900 hasConceptScore W4362544900C110875604 @default.
- W4362544900 hasConceptScore W4362544900C119857082 @default.
- W4362544900 hasConceptScore W4362544900C120665830 @default.
- W4362544900 hasConceptScore W4362544900C121332964 @default.
- W4362544900 hasConceptScore W4362544900C12267149 @default.
- W4362544900 hasConceptScore W4362544900C136764020 @default.
- W4362544900 hasConceptScore W4362544900C154945302 @default.
- W4362544900 hasConceptScore W4362544900C192209626 @default.
- W4362544900 hasConceptScore W4362544900C41008148 @default.
- W4362544900 hasConceptScore W4362544900C50644808 @default.
- W4362544900 hasConceptScore W4362544900C52001869 @default.
- W4362544900 hasConceptScore W4362544900C60908668 @default.
- W4362544900 hasConceptScore W4362544900C81363708 @default.
- W4362544900 hasLocation W43625449001 @default.
- W4362544900 hasOpenAccess W4362544900 @default.
- W4362544900 hasPrimaryLocation W43625449001 @default.
- W4362544900 hasRelatedWork W2979979539 @default.
- W4362544900 hasRelatedWork W2996933976 @default.
- W4362544900 hasRelatedWork W3193301557 @default.
- W4362544900 hasRelatedWork W3211546796 @default.
- W4362544900 hasRelatedWork W4205958290 @default.
- W4362544900 hasRelatedWork W4283784365 @default.
- W4362544900 hasRelatedWork W4294067781 @default.
- W4362544900 hasRelatedWork W4311106074 @default.
- W4362544900 hasRelatedWork W4320802194 @default.
- W4362544900 hasRelatedWork W4327499916 @default.
- W4362544900 isParatext "false" @default.
- W4362544900 isRetracted "false" @default.
- W4362544900 workType "article" @default.