Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362552650> ?p ?o ?g. }
- W4362552650 abstract "Abstract In the manufacturing industry, tool wear prediction is critical for increased productivity and product quality. The focus of this study is to compare the results obtained via an artificial neural network (ANN) models for tool wear prediction on machining a nickel based super alloy: Nimonic C-263 alloy with other prediction method and the effects different parameters have on the efficiency of prediction. In this study, flank wear area (in micron2) is used as the wear indication variable during machining since it influences the precision, stability, and reliability of the machine, whereas cutting speed, feed, and depth of cut are used as input factors. Other variables include cutting force, temperature and MRR. The experimentally determined values will be utilised to train an artificial neural network (ANN) for tool wear prediction. To minimise extraneous variables, correlations between the parameters and wear are determined. The ANN model's error of forecasted response values is compared to other models such as linear regression, as well as prediction values without the elimination of variables. A GUI will also be created that lets the user input the necessary parameters to trained neural network model which then predicts the flank wear area. Results indicate that eliminating parameters resulted in reduction of prediction error (from 11–8%) and also it was found that ANN produced better results than linear regression, decision tree and random forest. Hence, more precise estimation of tool wear can be performed in a lesser time-frame. Number of experimental trials had to be limited due to unfavourable circumstances. The dataset size had been increased by assuming linearity between two results. However, this is justified as the objective is to compare prediction accuracies before and after elimination of variables after a correlation study." @default.
- W4362552650 created "2023-04-06" @default.
- W4362552650 creator A5004760665 @default.
- W4362552650 creator A5010250626 @default.
- W4362552650 creator A5039781628 @default.
- W4362552650 creator A5082773053 @default.
- W4362552650 creator A5082799047 @default.
- W4362552650 date "2023-04-04" @default.
- W4362552650 modified "2023-10-14" @default.
- W4362552650 title "Neural Networks and Deep learning approach to predict the Tool life during turning of Nimonic C-263 Alloy" @default.
- W4362552650 cites W1964466875 @default.
- W4362552650 cites W1967640926 @default.
- W4362552650 cites W2010432954 @default.
- W4362552650 cites W2027595890 @default.
- W4362552650 cites W2080223447 @default.
- W4362552650 cites W2284844485 @default.
- W4362552650 cites W2465007749 @default.
- W4362552650 cites W2473893767 @default.
- W4362552650 cites W2603426426 @default.
- W4362552650 cites W2891545870 @default.
- W4362552650 cites W2936377522 @default.
- W4362552650 cites W2997308049 @default.
- W4362552650 cites W3028078160 @default.
- W4362552650 cites W3035178875 @default.
- W4362552650 cites W3043547158 @default.
- W4362552650 cites W3045576536 @default.
- W4362552650 cites W3089280776 @default.
- W4362552650 cites W3116979932 @default.
- W4362552650 cites W3124916412 @default.
- W4362552650 cites W3157618166 @default.
- W4362552650 cites W4210652614 @default.
- W4362552650 doi "https://doi.org/10.21203/rs.3.rs-2376256/v1" @default.
- W4362552650 hasPublicationYear "2023" @default.
- W4362552650 type Work @default.
- W4362552650 citedByCount "0" @default.
- W4362552650 crossrefType "posted-content" @default.
- W4362552650 hasAuthorship W4362552650A5004760665 @default.
- W4362552650 hasAuthorship W4362552650A5010250626 @default.
- W4362552650 hasAuthorship W4362552650A5039781628 @default.
- W4362552650 hasAuthorship W4362552650A5082773053 @default.
- W4362552650 hasAuthorship W4362552650A5082799047 @default.
- W4362552650 hasBestOaLocation W43625526501 @default.
- W4362552650 hasConcept C105795698 @default.
- W4362552650 hasConcept C119857082 @default.
- W4362552650 hasConcept C121332964 @default.
- W4362552650 hasConcept C127413603 @default.
- W4362552650 hasConcept C144024400 @default.
- W4362552650 hasConcept C145514866 @default.
- W4362552650 hasConcept C154945302 @default.
- W4362552650 hasConcept C163258240 @default.
- W4362552650 hasConcept C169258074 @default.
- W4362552650 hasConcept C19165224 @default.
- W4362552650 hasConcept C191897082 @default.
- W4362552650 hasConcept C192562407 @default.
- W4362552650 hasConcept C207055975 @default.
- W4362552650 hasConcept C2776450708 @default.
- W4362552650 hasConcept C2780026712 @default.
- W4362552650 hasConcept C2780395675 @default.
- W4362552650 hasConcept C33923547 @default.
- W4362552650 hasConcept C41008148 @default.
- W4362552650 hasConcept C43214815 @default.
- W4362552650 hasConcept C45804977 @default.
- W4362552650 hasConcept C48921125 @default.
- W4362552650 hasConcept C50644808 @default.
- W4362552650 hasConcept C523214423 @default.
- W4362552650 hasConcept C62520636 @default.
- W4362552650 hasConcept C78519656 @default.
- W4362552650 hasConcept C83546350 @default.
- W4362552650 hasConcept C84525736 @default.
- W4362552650 hasConceptScore W4362552650C105795698 @default.
- W4362552650 hasConceptScore W4362552650C119857082 @default.
- W4362552650 hasConceptScore W4362552650C121332964 @default.
- W4362552650 hasConceptScore W4362552650C127413603 @default.
- W4362552650 hasConceptScore W4362552650C144024400 @default.
- W4362552650 hasConceptScore W4362552650C145514866 @default.
- W4362552650 hasConceptScore W4362552650C154945302 @default.
- W4362552650 hasConceptScore W4362552650C163258240 @default.
- W4362552650 hasConceptScore W4362552650C169258074 @default.
- W4362552650 hasConceptScore W4362552650C19165224 @default.
- W4362552650 hasConceptScore W4362552650C191897082 @default.
- W4362552650 hasConceptScore W4362552650C192562407 @default.
- W4362552650 hasConceptScore W4362552650C207055975 @default.
- W4362552650 hasConceptScore W4362552650C2776450708 @default.
- W4362552650 hasConceptScore W4362552650C2780026712 @default.
- W4362552650 hasConceptScore W4362552650C2780395675 @default.
- W4362552650 hasConceptScore W4362552650C33923547 @default.
- W4362552650 hasConceptScore W4362552650C41008148 @default.
- W4362552650 hasConceptScore W4362552650C43214815 @default.
- W4362552650 hasConceptScore W4362552650C45804977 @default.
- W4362552650 hasConceptScore W4362552650C48921125 @default.
- W4362552650 hasConceptScore W4362552650C50644808 @default.
- W4362552650 hasConceptScore W4362552650C523214423 @default.
- W4362552650 hasConceptScore W4362552650C62520636 @default.
- W4362552650 hasConceptScore W4362552650C78519656 @default.
- W4362552650 hasConceptScore W4362552650C83546350 @default.
- W4362552650 hasConceptScore W4362552650C84525736 @default.
- W4362552650 hasLocation W43625526501 @default.
- W4362552650 hasOpenAccess W4362552650 @default.
- W4362552650 hasPrimaryLocation W43625526501 @default.
- W4362552650 hasRelatedWork W2183273809 @default.