Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362561392> ?p ?o ?g. }
- W4362561392 abstract "In order to learn about broad scale ecological patterns, data from large-scale surveys must allow us to either estimate the correlations between the environment and an outcome and/or accurately predict ecological patterns. An important part of data collection is the sampling effort used to collect observations, which we decompose into two quantities: the number of observations or plots ( n ) and the per-observation/plot effort ( E ; e.g., area per plot). If we want to understand the relationships between predictors and a response variable, then lower model parameter uncertainty is desirable. If the goal is to predict a response variable, then lower prediction error is preferable. We aim to learn if and when aggregating data can help attain these goals. We find that a small sample size coupled with large observation effort coupled (few large) can yield better predictions when compared to a large number of observations with low observation effort (many small). We also show that the combination of the two values ( n and E ), rather than one alone, has an impact on parameter uncertainty. In an application to Forest Inventory and Analysis (FIA) data, we model the tree density of selected species at various amounts of aggregation using linear regression in order to compare the findings from simulated data to real data. The application supports the theoretical findings that increasing observational effort through aggregation can lead to improved predictions, conditional on the thoughtful aggregation of the observational plots. In particular, aggregations over extremely large and variable covariate space may lead to poor prediction and high parameter uncertainty. Analyses of large-range data can improve with aggregation, with implications for both model evaluation and sampling design: testing model prediction accuracy without an underlying knowledge of the datasets and the scale at which predictor variables operate can obscure meaningful results." @default.
- W4362561392 created "2023-04-06" @default.
- W4362561392 creator A5020028553 @default.
- W4362561392 creator A5041610469 @default.
- W4362561392 creator A5060625038 @default.
- W4362561392 creator A5090220956 @default.
- W4362561392 date "2023-04-04" @default.
- W4362561392 modified "2023-10-16" @default.
- W4362561392 title "Learning from monitoring networks: Few-large vs. many-small plots and multi-scale analysis" @default.
- W4362561392 cites W1496467185 @default.
- W4362561392 cites W1923475232 @default.
- W4362561392 cites W1963710300 @default.
- W4362561392 cites W1986343408 @default.
- W4362561392 cites W1994904893 @default.
- W4362561392 cites W1998025025 @default.
- W4362561392 cites W2052365813 @default.
- W4362561392 cites W2075845155 @default.
- W4362561392 cites W2097601813 @default.
- W4362561392 cites W2109688670 @default.
- W4362561392 cites W2118853590 @default.
- W4362561392 cites W2126983730 @default.
- W4362561392 cites W2131258005 @default.
- W4362561392 cites W2138102892 @default.
- W4362561392 cites W2141680316 @default.
- W4362561392 cites W2156572918 @default.
- W4362561392 cites W2156932411 @default.
- W4362561392 cites W2166079210 @default.
- W4362561392 cites W2169359815 @default.
- W4362561392 cites W2202823830 @default.
- W4362561392 cites W2209043119 @default.
- W4362561392 cites W2284142469 @default.
- W4362561392 cites W2290041774 @default.
- W4362561392 cites W2311004077 @default.
- W4362561392 cites W2542271281 @default.
- W4362561392 cites W2585522075 @default.
- W4362561392 cites W2588003345 @default.
- W4362561392 cites W2606165139 @default.
- W4362561392 cites W2779722840 @default.
- W4362561392 cites W2784327149 @default.
- W4362561392 cites W2786425804 @default.
- W4362561392 cites W2792390205 @default.
- W4362561392 cites W2889784734 @default.
- W4362561392 cites W2891091873 @default.
- W4362561392 cites W2994974338 @default.
- W4362561392 cites W3015478569 @default.
- W4362561392 cites W3022515330 @default.
- W4362561392 cites W3118532264 @default.
- W4362561392 cites W3121452939 @default.
- W4362561392 cites W3172786784 @default.
- W4362561392 cites W3192626077 @default.
- W4362561392 cites W4200066253 @default.
- W4362561392 cites W4234706732 @default.
- W4362561392 cites W804997274 @default.
- W4362561392 doi "https://doi.org/10.3389/fevo.2023.1114569" @default.
- W4362561392 hasPublicationYear "2023" @default.
- W4362561392 type Work @default.
- W4362561392 citedByCount "0" @default.
- W4362561392 crossrefType "journal-article" @default.
- W4362561392 hasAuthorship W4362561392A5020028553 @default.
- W4362561392 hasAuthorship W4362561392A5041610469 @default.
- W4362561392 hasAuthorship W4362561392A5060625038 @default.
- W4362561392 hasAuthorship W4362561392A5090220956 @default.
- W4362561392 hasBestOaLocation W43625613921 @default.
- W4362561392 hasConcept C105795698 @default.
- W4362561392 hasConcept C106131492 @default.
- W4362561392 hasConcept C119043178 @default.
- W4362561392 hasConcept C129848803 @default.
- W4362561392 hasConcept C134306372 @default.
- W4362561392 hasConcept C140779682 @default.
- W4362561392 hasConcept C149782125 @default.
- W4362561392 hasConcept C152877465 @default.
- W4362561392 hasConcept C167651023 @default.
- W4362561392 hasConcept C182365436 @default.
- W4362561392 hasConcept C185592680 @default.
- W4362561392 hasConcept C198531522 @default.
- W4362561392 hasConcept C205649164 @default.
- W4362561392 hasConcept C23131810 @default.
- W4362561392 hasConcept C2778755073 @default.
- W4362561392 hasConcept C31972630 @default.
- W4362561392 hasConcept C33923547 @default.
- W4362561392 hasConcept C41008148 @default.
- W4362561392 hasConcept C43617362 @default.
- W4362561392 hasConcept C58640448 @default.
- W4362561392 hasConcept C83546350 @default.
- W4362561392 hasConceptScore W4362561392C105795698 @default.
- W4362561392 hasConceptScore W4362561392C106131492 @default.
- W4362561392 hasConceptScore W4362561392C119043178 @default.
- W4362561392 hasConceptScore W4362561392C129848803 @default.
- W4362561392 hasConceptScore W4362561392C134306372 @default.
- W4362561392 hasConceptScore W4362561392C140779682 @default.
- W4362561392 hasConceptScore W4362561392C149782125 @default.
- W4362561392 hasConceptScore W4362561392C152877465 @default.
- W4362561392 hasConceptScore W4362561392C167651023 @default.
- W4362561392 hasConceptScore W4362561392C182365436 @default.
- W4362561392 hasConceptScore W4362561392C185592680 @default.
- W4362561392 hasConceptScore W4362561392C198531522 @default.
- W4362561392 hasConceptScore W4362561392C205649164 @default.
- W4362561392 hasConceptScore W4362561392C23131810 @default.
- W4362561392 hasConceptScore W4362561392C2778755073 @default.
- W4362561392 hasConceptScore W4362561392C31972630 @default.