Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362563552> ?p ?o ?g. }
- W4362563552 endingPage "1751" @default.
- W4362563552 startingPage "1742" @default.
- W4362563552 abstract "The proliferation in embedded and communication technologies made the concept of the Internet of Medical Things (IoMT) a reality. Individuals’ physical and physiological status can be constantly monitored, and numerous data can be collected through wearable and mobile devices. However, the silo of individual data brings limitations to existing machine learning approaches to correctly identify a user’s health status. Distributed machine learning paradigms, such as federated learning, offer a potential solution for privacy-preserving knowledge sharing without sending raw personal data. However, federated learning is vulnerable to harmful participants that can degrade the overall model quality by sharing low-quality data. Therefore, it is critical to select suitable participants to ensure the accuracy and efficiency of federated learning. In this article, a unique clustering-based approach is proposed to use social context data for participant selection. Different edge participant groups will be established, and group-specific federated learning will be performed. The models of various edge groups will be further aggregated to strengthen the robustness of the global model. The experimental results demonstrated that through participant selection, clustering-based hierarchical federated learning can achieve better results with less participants in two different IoMT applications for ECG and human motion monitoring. This shows the efficacy of the proposed method in improving federated learning performance and efficiency in various IoMT applications." @default.
- W4362563552 created "2023-04-06" @default.
- W4362563552 creator A5054171585 @default.
- W4362563552 creator A5055675863 @default.
- W4362563552 creator A5061363755 @default.
- W4362563552 creator A5068740589 @default.
- W4362563552 creator A5073441538 @default.
- W4362563552 creator A5077846534 @default.
- W4362563552 creator A5078219471 @default.
- W4362563552 creator A5091532881 @default.
- W4362563552 date "2023-08-01" @default.
- W4362563552 modified "2023-09-26" @default.
- W4362563552 title "Hierarchical Federated Learning With Social Context Clustering-Based Participant Selection for Internet of Medical Things Applications" @default.
- W4362563552 cites W2095409369 @default.
- W4362563552 cites W2809674292 @default.
- W4362563552 cites W2887873643 @default.
- W4362563552 cites W2898186212 @default.
- W4362563552 cites W2998045710 @default.
- W4362563552 cites W3025029677 @default.
- W4362563552 cites W3029176123 @default.
- W4362563552 cites W3038426846 @default.
- W4362563552 cites W3039830485 @default.
- W4362563552 cites W3080934299 @default.
- W4362563552 cites W3084272429 @default.
- W4362563552 cites W3092144916 @default.
- W4362563552 cites W3094736543 @default.
- W4362563552 cites W3103802018 @default.
- W4362563552 cites W3107142181 @default.
- W4362563552 cites W3110885177 @default.
- W4362563552 cites W3116843489 @default.
- W4362563552 cites W3119831324 @default.
- W4362563552 cites W3124636507 @default.
- W4362563552 cites W3126049359 @default.
- W4362563552 cites W3126842209 @default.
- W4362563552 cites W3134843574 @default.
- W4362563552 cites W3159080474 @default.
- W4362563552 cites W3162352308 @default.
- W4362563552 cites W3169736721 @default.
- W4362563552 cites W3174440551 @default.
- W4362563552 cites W3181552969 @default.
- W4362563552 cites W3186051974 @default.
- W4362563552 cites W3203932036 @default.
- W4362563552 cites W3204183032 @default.
- W4362563552 cites W4205916405 @default.
- W4362563552 cites W4206358577 @default.
- W4362563552 cites W4210788152 @default.
- W4362563552 cites W4210960727 @default.
- W4362563552 cites W4221158339 @default.
- W4362563552 cites W4226461837 @default.
- W4362563552 cites W4286210752 @default.
- W4362563552 doi "https://doi.org/10.1109/tcss.2023.3259431" @default.
- W4362563552 hasPublicationYear "2023" @default.
- W4362563552 type Work @default.
- W4362563552 citedByCount "0" @default.
- W4362563552 crossrefType "journal-article" @default.
- W4362563552 hasAuthorship W4362563552A5054171585 @default.
- W4362563552 hasAuthorship W4362563552A5055675863 @default.
- W4362563552 hasAuthorship W4362563552A5061363755 @default.
- W4362563552 hasAuthorship W4362563552A5068740589 @default.
- W4362563552 hasAuthorship W4362563552A5073441538 @default.
- W4362563552 hasAuthorship W4362563552A5077846534 @default.
- W4362563552 hasAuthorship W4362563552A5078219471 @default.
- W4362563552 hasAuthorship W4362563552A5091532881 @default.
- W4362563552 hasConcept C104317684 @default.
- W4362563552 hasConcept C110875604 @default.
- W4362563552 hasConcept C119857082 @default.
- W4362563552 hasConcept C136764020 @default.
- W4362563552 hasConcept C149635348 @default.
- W4362563552 hasConcept C150594956 @default.
- W4362563552 hasConcept C151730666 @default.
- W4362563552 hasConcept C154945302 @default.
- W4362563552 hasConcept C185592680 @default.
- W4362563552 hasConcept C2779343474 @default.
- W4362563552 hasConcept C41008148 @default.
- W4362563552 hasConcept C54290928 @default.
- W4362563552 hasConcept C55493867 @default.
- W4362563552 hasConcept C63479239 @default.
- W4362563552 hasConcept C73555534 @default.
- W4362563552 hasConcept C86803240 @default.
- W4362563552 hasConceptScore W4362563552C104317684 @default.
- W4362563552 hasConceptScore W4362563552C110875604 @default.
- W4362563552 hasConceptScore W4362563552C119857082 @default.
- W4362563552 hasConceptScore W4362563552C136764020 @default.
- W4362563552 hasConceptScore W4362563552C149635348 @default.
- W4362563552 hasConceptScore W4362563552C150594956 @default.
- W4362563552 hasConceptScore W4362563552C151730666 @default.
- W4362563552 hasConceptScore W4362563552C154945302 @default.
- W4362563552 hasConceptScore W4362563552C185592680 @default.
- W4362563552 hasConceptScore W4362563552C2779343474 @default.
- W4362563552 hasConceptScore W4362563552C41008148 @default.
- W4362563552 hasConceptScore W4362563552C54290928 @default.
- W4362563552 hasConceptScore W4362563552C55493867 @default.
- W4362563552 hasConceptScore W4362563552C63479239 @default.
- W4362563552 hasConceptScore W4362563552C73555534 @default.
- W4362563552 hasConceptScore W4362563552C86803240 @default.
- W4362563552 hasFunder F4320317459 @default.
- W4362563552 hasFunder F4320326217 @default.
- W4362563552 hasIssue "4" @default.