Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362575265> ?p ?o ?g. }
- W4362575265 endingPage "562" @default.
- W4362575265 startingPage "550" @default.
- W4362575265 abstract "Obtaining accurate information about land cover is a critical aspect of environmental monitoring in mining areas. However, the land cover in these areas is often complex and poses a challenge for analysis compared to other landscapes. This results in the difficulty of acquiring effective features and an unbalanced proportion of available training samples. We introduce a new approach to obtaining effective image features and enhancing the extraction of open-pit (OP) and waste-dump area (WDA) by using a mining feature-enhanced ResNet (MFE-ResNet). Our framework utilizes image objects as the basic units of high spatial resolution images (HSRIs) to better incorporate spatial and geometric information. The MFE-ResNet is an improvement of the ResNet18 architecture, forming a 26-layer network, and reducing the computational complexity by changing the convolutional kernel size. A squeeze-and-excitation (SE) module is also introduced to form an SE-residual structure to improve the network’s ability to perceive the detailed mining area features. To alleviate the sample imbalance problem, a switchable normalization (SN) layer is applied to optimize the internal network structure. In addition, focal loss is introduced in the training process. We build an evaluation system that considers both the number of objects and their area. Compared with other six deep learning methods, our MFE-ResNet achieves the best overall accuracy in both large and small study areas. Specifically, MFE-ResNet obtained F values (F) of 87.73% and 97.28%, and quality (Q) of 81.37% and 95.18% in OP extraction. The F of WDA extraction improved by 0.99% and 2.13%, and the Q improved by 0.98% and 9.56% compared to the second-ranked model. We show that our framework exhibits promising performance in monitoring mining areas." @default.
- W4362575265 created "2023-04-06" @default.
- W4362575265 creator A5013038112 @default.
- W4362575265 creator A5054292278 @default.
- W4362575265 creator A5063406632 @default.
- W4362575265 date "2023-08-01" @default.
- W4362575265 modified "2023-10-16" @default.
- W4362575265 title "MFE-ResNet: A new extraction framework for land cover characterization in mining areas" @default.
- W4362575265 cites W1964262728 @default.
- W4362575265 cites W1984792953 @default.
- W4362575265 cites W1990588199 @default.
- W4362575265 cites W1991129553 @default.
- W4362575265 cites W2023930442 @default.
- W4362575265 cites W2027575677 @default.
- W4362575265 cites W2040288742 @default.
- W4362575265 cites W2050397026 @default.
- W4362575265 cites W2080134555 @default.
- W4362575265 cites W2095028777 @default.
- W4362575265 cites W2106677999 @default.
- W4362575265 cites W2122282653 @default.
- W4362575265 cites W2122419177 @default.
- W4362575265 cites W2122892105 @default.
- W4362575265 cites W2141504882 @default.
- W4362575265 cites W2151295706 @default.
- W4362575265 cites W2161273109 @default.
- W4362575265 cites W2313076811 @default.
- W4362575265 cites W2584849419 @default.
- W4362575265 cites W2603192734 @default.
- W4362575265 cites W2618669755 @default.
- W4362575265 cites W2740660508 @default.
- W4362575265 cites W2751694342 @default.
- W4362575265 cites W2777326413 @default.
- W4362575265 cites W2795402696 @default.
- W4362575265 cites W2841091033 @default.
- W4362575265 cites W2938862655 @default.
- W4362575265 cites W2965666581 @default.
- W4362575265 cites W2967019526 @default.
- W4362575265 cites W2973159718 @default.
- W4362575265 cites W3007949000 @default.
- W4362575265 cites W3008537971 @default.
- W4362575265 cites W3012555526 @default.
- W4362575265 cites W3093794378 @default.
- W4362575265 cites W3121853134 @default.
- W4362575265 cites W3128068235 @default.
- W4362575265 cites W3132826520 @default.
- W4362575265 cites W3187403622 @default.
- W4362575265 cites W3197529628 @default.
- W4362575265 cites W4226066651 @default.
- W4362575265 cites W4295817130 @default.
- W4362575265 cites W4296982527 @default.
- W4362575265 cites W4310344191 @default.
- W4362575265 cites W4313438466 @default.
- W4362575265 doi "https://doi.org/10.1016/j.future.2023.04.001" @default.
- W4362575265 hasPublicationYear "2023" @default.
- W4362575265 type Work @default.
- W4362575265 citedByCount "2" @default.
- W4362575265 countsByYear W43625752652023 @default.
- W4362575265 crossrefType "journal-article" @default.
- W4362575265 hasAuthorship W4362575265A5013038112 @default.
- W4362575265 hasAuthorship W4362575265A5054292278 @default.
- W4362575265 hasAuthorship W4362575265A5063406632 @default.
- W4362575265 hasConcept C108583219 @default.
- W4362575265 hasConcept C111919701 @default.
- W4362575265 hasConcept C11413529 @default.
- W4362575265 hasConcept C124101348 @default.
- W4362575265 hasConcept C127413603 @default.
- W4362575265 hasConcept C136886441 @default.
- W4362575265 hasConcept C144024400 @default.
- W4362575265 hasConcept C147176958 @default.
- W4362575265 hasConcept C153180895 @default.
- W4362575265 hasConcept C154945302 @default.
- W4362575265 hasConcept C155512373 @default.
- W4362575265 hasConcept C19165224 @default.
- W4362575265 hasConcept C193415008 @default.
- W4362575265 hasConcept C2780428219 @default.
- W4362575265 hasConcept C2780648208 @default.
- W4362575265 hasConcept C2944601119 @default.
- W4362575265 hasConcept C38652104 @default.
- W4362575265 hasConcept C41008148 @default.
- W4362575265 hasConcept C4792198 @default.
- W4362575265 hasConcept C52622490 @default.
- W4362575265 hasConcept C78519656 @default.
- W4362575265 hasConcept C98045186 @default.
- W4362575265 hasConceptScore W4362575265C108583219 @default.
- W4362575265 hasConceptScore W4362575265C111919701 @default.
- W4362575265 hasConceptScore W4362575265C11413529 @default.
- W4362575265 hasConceptScore W4362575265C124101348 @default.
- W4362575265 hasConceptScore W4362575265C127413603 @default.
- W4362575265 hasConceptScore W4362575265C136886441 @default.
- W4362575265 hasConceptScore W4362575265C144024400 @default.
- W4362575265 hasConceptScore W4362575265C147176958 @default.
- W4362575265 hasConceptScore W4362575265C153180895 @default.
- W4362575265 hasConceptScore W4362575265C154945302 @default.
- W4362575265 hasConceptScore W4362575265C155512373 @default.
- W4362575265 hasConceptScore W4362575265C19165224 @default.
- W4362575265 hasConceptScore W4362575265C193415008 @default.
- W4362575265 hasConceptScore W4362575265C2780428219 @default.
- W4362575265 hasConceptScore W4362575265C2780648208 @default.