Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362575308> ?p ?o ?g. }
- W4362575308 endingPage "105342" @default.
- W4362575308 startingPage "105342" @default.
- W4362575308 abstract "Spectral analysis techniques are valuable tools at the disposal of paleoclimate scientists in their research of cyclical phenomena potentially responsible for past climatic fluctuations. Advances in computing and an increased availability of climate time series have helped to consolidate this approach. Yet the visual representation of spectral analysis results has not improved at the same pace. Time-frequency analysis aims to identify periodic signals that vary over time using 2-D color graphs, depicting spectral bands theoretically discernible from the image background. The paleoclimate literature is full of examples such as the continuous wavelet analysis, the evolutionary fast Fourier transform (FFT) spectrogram, or even the more recent synchrosqueezing transform. Our approach is based on the stack of non-evolutive (assuming stationary behaviour) spectral analysis results from thousands of fixed interval time series, previously split from a longer and unevenly spaced (irregular sampling) paleoclimate time series. As illustrative examples, the targeted time series are derived from the LR04 Global Pliocene-Pleistocene Benthic δ18O stack and from the 65 °N summer insolation for the last 5.3 Myr, by means of the Lomb-Scargle periodogram technique. Enhanced and clearer visualization is achieved through the novel incorporation of the terrain analysis techniques: slope, hillshading and color mapping, and posterior blending of the individual images, using Python code. The result consists of a high resolution graphical output, allowing for better qualitative and quantitative interpretations of the obtained cyclicity, as the code incorporates the import of the achieved confidence levels from the spectral technique and the option to obscure the pixels under a certain threshold value. The application of terrain analysis techniques on visualization of spectral analysis results has the purpose of improving previous graphical representations of paleoclimate time-series, especially those time-frequency aspects of the involved phenomena. New developments of our approach may be applied to time-frequency analysis directly, supporting present and future paleoclimate studies." @default.
- W4362575308 created "2023-04-06" @default.
- W4362575308 creator A5076092571 @default.
- W4362575308 creator A5079175759 @default.
- W4362575308 creator A5082121579 @default.
- W4362575308 date "2023-06-01" @default.
- W4362575308 modified "2023-10-18" @default.
- W4362575308 title "Terrain methods on spectral analysis for paleoclimate interpretations: A novel visualization technique using python" @default.
- W4362575308 cites W1583033877 @default.
- W4362575308 cites W1598078688 @default.
- W4362575308 cites W1631559605 @default.
- W4362575308 cites W1951906813 @default.
- W4362575308 cites W1974618482 @default.
- W4362575308 cites W1977512462 @default.
- W4362575308 cites W1984282652 @default.
- W4362575308 cites W1986316936 @default.
- W4362575308 cites W1995875735 @default.
- W4362575308 cites W2012964785 @default.
- W4362575308 cites W2017125056 @default.
- W4362575308 cites W2019271750 @default.
- W4362575308 cites W2022545034 @default.
- W4362575308 cites W2026574307 @default.
- W4362575308 cites W2032075694 @default.
- W4362575308 cites W2034139177 @default.
- W4362575308 cites W2035705269 @default.
- W4362575308 cites W2043222232 @default.
- W4362575308 cites W2053191845 @default.
- W4362575308 cites W2059735133 @default.
- W4362575308 cites W2060337538 @default.
- W4362575308 cites W2068059354 @default.
- W4362575308 cites W2074554053 @default.
- W4362575308 cites W2080993251 @default.
- W4362575308 cites W2081986197 @default.
- W4362575308 cites W2086972503 @default.
- W4362575308 cites W2093704317 @default.
- W4362575308 cites W2097904732 @default.
- W4362575308 cites W2101403521 @default.
- W4362575308 cites W2106822551 @default.
- W4362575308 cites W2107030987 @default.
- W4362575308 cites W2116206087 @default.
- W4362575308 cites W2127380962 @default.
- W4362575308 cites W2135485595 @default.
- W4362575308 cites W2140477756 @default.
- W4362575308 cites W2141882346 @default.
- W4362575308 cites W2155706641 @default.
- W4362575308 cites W2157644066 @default.
- W4362575308 cites W2162136094 @default.
- W4362575308 cites W2171757890 @default.
- W4362575308 cites W2212446569 @default.
- W4362575308 cites W2560064856 @default.
- W4362575308 cites W2591015770 @default.
- W4362575308 cites W2622779476 @default.
- W4362575308 cites W2728114477 @default.
- W4362575308 cites W2728779248 @default.
- W4362575308 cites W2729144171 @default.
- W4362575308 cites W2741385103 @default.
- W4362575308 cites W3010719726 @default.
- W4362575308 cites W3033610448 @default.
- W4362575308 cites W3152641384 @default.
- W4362575308 cites W3170121813 @default.
- W4362575308 cites W3197399218 @default.
- W4362575308 cites W3204657031 @default.
- W4362575308 cites W3210689682 @default.
- W4362575308 cites W4306293736 @default.
- W4362575308 doi "https://doi.org/10.1016/j.cageo.2023.105342" @default.
- W4362575308 hasPublicationYear "2023" @default.
- W4362575308 type Work @default.
- W4362575308 citedByCount "0" @default.
- W4362575308 crossrefType "journal-article" @default.
- W4362575308 hasAuthorship W4362575308A5076092571 @default.
- W4362575308 hasAuthorship W4362575308A5079175759 @default.
- W4362575308 hasAuthorship W4362575308A5082121579 @default.
- W4362575308 hasBestOaLocation W43625753081 @default.
- W4362575308 hasConcept C111368507 @default.
- W4362575308 hasConcept C111919701 @default.
- W4362575308 hasConcept C127313418 @default.
- W4362575308 hasConcept C132651083 @default.
- W4362575308 hasConcept C154945302 @default.
- W4362575308 hasConcept C161840515 @default.
- W4362575308 hasConcept C205649164 @default.
- W4362575308 hasConcept C205711294 @default.
- W4362575308 hasConcept C33683781 @default.
- W4362575308 hasConcept C36464697 @default.
- W4362575308 hasConcept C41008148 @default.
- W4362575308 hasConcept C45273575 @default.
- W4362575308 hasConcept C47432892 @default.
- W4362575308 hasConcept C519991488 @default.
- W4362575308 hasConcept C58640448 @default.
- W4362575308 hasConceptScore W4362575308C111368507 @default.
- W4362575308 hasConceptScore W4362575308C111919701 @default.
- W4362575308 hasConceptScore W4362575308C127313418 @default.
- W4362575308 hasConceptScore W4362575308C132651083 @default.
- W4362575308 hasConceptScore W4362575308C154945302 @default.
- W4362575308 hasConceptScore W4362575308C161840515 @default.
- W4362575308 hasConceptScore W4362575308C205649164 @default.
- W4362575308 hasConceptScore W4362575308C205711294 @default.
- W4362575308 hasConceptScore W4362575308C33683781 @default.
- W4362575308 hasConceptScore W4362575308C36464697 @default.