Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362576543> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4362576543 abstract "Abstract In recent years, the research on the domestic and international sports industry has made considerable achievements, but there are still some loopholes in the content, that is, there is still a vacancy in the comprehensive quantitative evaluation of the economic development of the sports industry, especially in the statistics of the output value of the sports industry, which lacks a comprehensive understanding of the economic development of the industry. In the state of dual demand research and application, it is still necessary to reveal the publicity and education of industrial scale, industrial structure, industrial function and industrial safety between people and industries, which is also a necessary way to develop the talent guarantee industry. In this work, we should establish an economic model related to the sports industry. It mainly applies the deep learning algorithm and data information mining technology. After allowing the extraction of information from the sports industry database, it is converted into an economic model of the sports industry. It uses scientific and efficient processing methods to analyze a large number of diverse data, in order to find the hidden laws and knowledge behind it. Therefore, this paper uses data mining technology to process and analyze the economic development data of sports industry in detail, and conducts corresponding quantitative analysis according to the requirements of data development. Finally, this paper points out that the neural network in the deep learning algorithm has further training and learning on the economic data of the sports industry, which is convenient for the subsequent prediction of the economic development of the sports industry to make a greater breakthrough." @default.
- W4362576543 created "2023-04-06" @default.
- W4362576543 creator A5015558615 @default.
- W4362576543 creator A5052857862 @default.
- W4362576543 date "2023-04-03" @default.
- W4362576543 modified "2023-09-27" @default.
- W4362576543 title "Economic simulation of sports industry based on deep learning algorithm and data mining" @default.
- W4362576543 cites W1799793311 @default.
- W4362576543 cites W2095132818 @default.
- W4362576543 cites W2158585626 @default.
- W4362576543 cites W2234016759 @default.
- W4362576543 cites W2519796145 @default.
- W4362576543 cites W2557738935 @default.
- W4362576543 cites W2805108062 @default.
- W4362576543 cites W2925062794 @default.
- W4362576543 cites W3000323949 @default.
- W4362576543 cites W3011883454 @default.
- W4362576543 cites W3198872584 @default.
- W4362576543 doi "https://doi.org/10.21203/rs.3.rs-2725154/v1" @default.
- W4362576543 hasPublicationYear "2023" @default.
- W4362576543 type Work @default.
- W4362576543 citedByCount "0" @default.
- W4362576543 crossrefType "posted-content" @default.
- W4362576543 hasAuthorship W4362576543A5015558615 @default.
- W4362576543 hasAuthorship W4362576543A5052857862 @default.
- W4362576543 hasBestOaLocation W43625765431 @default.
- W4362576543 hasConcept C10138342 @default.
- W4362576543 hasConcept C111919701 @default.
- W4362576543 hasConcept C11413529 @default.
- W4362576543 hasConcept C144133560 @default.
- W4362576543 hasConcept C154945302 @default.
- W4362576543 hasConcept C162853370 @default.
- W4362576543 hasConcept C182306322 @default.
- W4362576543 hasConcept C2776003135 @default.
- W4362576543 hasConcept C41008148 @default.
- W4362576543 hasConcept C98045186 @default.
- W4362576543 hasConceptScore W4362576543C10138342 @default.
- W4362576543 hasConceptScore W4362576543C111919701 @default.
- W4362576543 hasConceptScore W4362576543C11413529 @default.
- W4362576543 hasConceptScore W4362576543C144133560 @default.
- W4362576543 hasConceptScore W4362576543C154945302 @default.
- W4362576543 hasConceptScore W4362576543C162853370 @default.
- W4362576543 hasConceptScore W4362576543C182306322 @default.
- W4362576543 hasConceptScore W4362576543C2776003135 @default.
- W4362576543 hasConceptScore W4362576543C41008148 @default.
- W4362576543 hasConceptScore W4362576543C98045186 @default.
- W4362576543 hasLocation W43625765431 @default.
- W4362576543 hasOpenAccess W4362576543 @default.
- W4362576543 hasPrimaryLocation W43625765431 @default.
- W4362576543 hasRelatedWork W1711359360 @default.
- W4362576543 hasRelatedWork W2348134996 @default.
- W4362576543 hasRelatedWork W2371101267 @default.
- W4362576543 hasRelatedWork W2386767533 @default.
- W4362576543 hasRelatedWork W2389493887 @default.
- W4362576543 hasRelatedWork W2392204824 @default.
- W4362576543 hasRelatedWork W2916676828 @default.
- W4362576543 hasRelatedWork W4242776865 @default.
- W4362576543 hasRelatedWork W4385996160 @default.
- W4362576543 hasRelatedWork W2012842278 @default.
- W4362576543 isParatext "false" @default.
- W4362576543 isRetracted "false" @default.
- W4362576543 workType "article" @default.