Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362579658> ?p ?o ?g. }
- W4362579658 endingPage "1687" @default.
- W4362579658 startingPage "1687" @default.
- W4362579658 abstract "A large number of mobile devices, smart wearable devices, and medical and health sensors continue to generate massive amounts of data, making edge devices’ data explode and making it possible to implement data-driven artificial intelligence. However, the “data silos” and other issues still exist and need to be solved. Fortunately, federated learning (FL) can deal with “data silos” in the medical field, facilitating collaborative learning across multiple institutions without sharing local data and avoiding user concerns about data privacy. However, it encounters two main challenges in the medical field. One is statistical heterogeneity, also known as non-IID (non-independent and identically distributed) data, i.e., data being non-IID between clients, which leads to model drift. The second is limited labeling because labels are hard to obtain due to the high cost and expertise requirement. Most existing federated learning algorithms only allow for supervised training settings. In this work, we proposed a novel federated learning framework, MixFedGAN, to tackle the above issues in federated networks with dynamic aggregation and knowledge distillation. A dynamic aggregation scheme was designed to reduce the impact of current low-performing clients and improve stability. Knowledge distillation was introduced into the local generator model with a new distillation regularization loss function to prevent essential parameters of the global generator model from significantly changing. In addition, we considered two scenarios under this framework: complete annotated data and limited labeled data. An experimental analysis on four heterogeneous COVID-19 infection segmentation datasets and three heterogeneous prostate MRI segmentation datasets verified the effectiveness of the proposed federated learning method." @default.
- W4362579658 created "2023-04-06" @default.
- W4362579658 creator A5013090918 @default.
- W4362579658 creator A5014319544 @default.
- W4362579658 creator A5032796694 @default.
- W4362579658 creator A5036142086 @default.
- W4362579658 date "2023-04-03" @default.
- W4362579658 modified "2023-10-05" @default.
- W4362579658 title "Federated Learning for Medical Imaging Segmentation via Dynamic Aggregation on Non-IID Data Silos" @default.
- W4362579658 cites W2049522781 @default.
- W4362579658 cites W2106033751 @default.
- W4362579658 cites W2750925197 @default.
- W4362579658 cites W2964159205 @default.
- W4362579658 cites W2966415767 @default.
- W4362579658 cites W2979637109 @default.
- W4362579658 cites W2995191368 @default.
- W4362579658 cites W3027969476 @default.
- W4362579658 cites W3095112681 @default.
- W4362579658 cites W3095569631 @default.
- W4362579658 cites W3100779497 @default.
- W4362579658 cites W3101639073 @default.
- W4362579658 cites W3115781494 @default.
- W4362579658 cites W3118996476 @default.
- W4362579658 cites W3122794187 @default.
- W4362579658 cites W3127057363 @default.
- W4362579658 cites W3128304793 @default.
- W4362579658 cites W3150684546 @default.
- W4362579658 cites W3168341999 @default.
- W4362579658 cites W3172312230 @default.
- W4362579658 cites W3182158470 @default.
- W4362579658 cites W3196371845 @default.
- W4362579658 cites W3199551447 @default.
- W4362579658 cites W3202812631 @default.
- W4362579658 cites W3204597713 @default.
- W4362579658 cites W3206394563 @default.
- W4362579658 cites W3206468898 @default.
- W4362579658 cites W3211185929 @default.
- W4362579658 cites W4294842893 @default.
- W4362579658 doi "https://doi.org/10.3390/electronics12071687" @default.
- W4362579658 hasPublicationYear "2023" @default.
- W4362579658 type Work @default.
- W4362579658 citedByCount "0" @default.
- W4362579658 crossrefType "journal-article" @default.
- W4362579658 hasAuthorship W4362579658A5013090918 @default.
- W4362579658 hasAuthorship W4362579658A5014319544 @default.
- W4362579658 hasAuthorship W4362579658A5032796694 @default.
- W4362579658 hasAuthorship W4362579658A5036142086 @default.
- W4362579658 hasBestOaLocation W43625796581 @default.
- W4362579658 hasConcept C105795698 @default.
- W4362579658 hasConcept C119857082 @default.
- W4362579658 hasConcept C121332964 @default.
- W4362579658 hasConcept C122123141 @default.
- W4362579658 hasConcept C124101348 @default.
- W4362579658 hasConcept C141513077 @default.
- W4362579658 hasConcept C154945302 @default.
- W4362579658 hasConcept C163258240 @default.
- W4362579658 hasConcept C197298091 @default.
- W4362579658 hasConcept C202444582 @default.
- W4362579658 hasConcept C24590314 @default.
- W4362579658 hasConcept C2780992000 @default.
- W4362579658 hasConcept C31258907 @default.
- W4362579658 hasConcept C33923547 @default.
- W4362579658 hasConcept C41008148 @default.
- W4362579658 hasConcept C62520636 @default.
- W4362579658 hasConcept C77088390 @default.
- W4362579658 hasConcept C82578977 @default.
- W4362579658 hasConcept C89600930 @default.
- W4362579658 hasConcept C9652623 @default.
- W4362579658 hasConceptScore W4362579658C105795698 @default.
- W4362579658 hasConceptScore W4362579658C119857082 @default.
- W4362579658 hasConceptScore W4362579658C121332964 @default.
- W4362579658 hasConceptScore W4362579658C122123141 @default.
- W4362579658 hasConceptScore W4362579658C124101348 @default.
- W4362579658 hasConceptScore W4362579658C141513077 @default.
- W4362579658 hasConceptScore W4362579658C154945302 @default.
- W4362579658 hasConceptScore W4362579658C163258240 @default.
- W4362579658 hasConceptScore W4362579658C197298091 @default.
- W4362579658 hasConceptScore W4362579658C202444582 @default.
- W4362579658 hasConceptScore W4362579658C24590314 @default.
- W4362579658 hasConceptScore W4362579658C2780992000 @default.
- W4362579658 hasConceptScore W4362579658C31258907 @default.
- W4362579658 hasConceptScore W4362579658C33923547 @default.
- W4362579658 hasConceptScore W4362579658C41008148 @default.
- W4362579658 hasConceptScore W4362579658C62520636 @default.
- W4362579658 hasConceptScore W4362579658C77088390 @default.
- W4362579658 hasConceptScore W4362579658C82578977 @default.
- W4362579658 hasConceptScore W4362579658C89600930 @default.
- W4362579658 hasConceptScore W4362579658C9652623 @default.
- W4362579658 hasIssue "7" @default.
- W4362579658 hasLocation W43625796581 @default.
- W4362579658 hasOpenAccess W4362579658 @default.
- W4362579658 hasPrimaryLocation W43625796581 @default.
- W4362579658 hasRelatedWork W2000422883 @default.
- W4362579658 hasRelatedWork W2961085424 @default.
- W4362579658 hasRelatedWork W3046775127 @default.
- W4362579658 hasRelatedWork W4286629047 @default.
- W4362579658 hasRelatedWork W4288754364 @default.
- W4362579658 hasRelatedWork W4306321456 @default.