Matches in SemOpenAlex for { <https://semopenalex.org/work/W4362584130> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4362584130 endingPage "S155" @default.
- W4362584130 startingPage "S154" @default.
- W4362584130 abstract "Pulmonologists have the complex task to select the optimal treatment for patients with advanced lung cancer to extend survival duration while minimizing side-effects. They do this mainly based on patient’s demographic and clinical data, patient preferences and guidelines. Digitalization of healthcare makes it possible to support this treatment selection process, aiming at more personalized and precise medicine. This study introduces a clinical decision support tool, based on prediction models for survival and burden of treatment, explainable machine learning (ML) and a Graphical User Interface (GUI) for physicians. ML models were trained on cohorts ranging in size of 89–405 lung cancer patients with stage IIIB and IV, to predict the survival probability for different treatment options, 6 weeks, 3 months, 6 months and 1 year after the start of the first treatment. Additional models were trained on the evolution of two symptom scales, dysphagia and alopecia, of the EORTC-QLQ-LC13 questionnaire to forecast the burden of treatment. Patient demographics, laboratory results, comorbidities, tumour characteristics and treatment regimens were used as features. All models combined allow the pulmonary oncologist to simulate different therapy responses via an in-house developed GUI. The classification prediction models achieved good performance results with area under the curve values ranging from 0.78 to 0.86. In practice, a physician enters a patient identifier in the GUI. Then, the tool automatically collects all required features of the patient, flagging divergent values. After selecting a treatment schedule, the model probability outcomes are depicted, as well as the importance of each feature (based on Shapley scores) which enables the pulmonologist to understand the rationale behind the ML model’s predictions. We have proven that models trained on real world hospital data are capable of making reliable outcome predictions. This GUI can be used in clinical practice, provided that extra data is collected and an extensive validation procedure takes place. This will enable physicians to use data-driven predictions based on patient and disease characteristics as support in their treatment decision process." @default.
- W4362584130 created "2023-04-06" @default.
- W4362584130 creator A5008870167 @default.
- W4362584130 creator A5012608503 @default.
- W4362584130 creator A5050533441 @default.
- W4362584130 creator A5070520624 @default.
- W4362584130 creator A5077943277 @default.
- W4362584130 creator A5079149866 @default.
- W4362584130 date "2023-04-01" @default.
- W4362584130 modified "2023-09-25" @default.
- W4362584130 title "213P Development of an explainable clinical decision support tool for advanced lung cancer patients" @default.
- W4362584130 doi "https://doi.org/10.1016/s1556-0864(23)00466-5" @default.
- W4362584130 hasPublicationYear "2023" @default.
- W4362584130 type Work @default.
- W4362584130 citedByCount "0" @default.
- W4362584130 crossrefType "journal-article" @default.
- W4362584130 hasAuthorship W4362584130A5008870167 @default.
- W4362584130 hasAuthorship W4362584130A5012608503 @default.
- W4362584130 hasAuthorship W4362584130A5050533441 @default.
- W4362584130 hasAuthorship W4362584130A5070520624 @default.
- W4362584130 hasAuthorship W4362584130A5077943277 @default.
- W4362584130 hasAuthorship W4362584130A5079149866 @default.
- W4362584130 hasBestOaLocation W43625841301 @default.
- W4362584130 hasConcept C119857082 @default.
- W4362584130 hasConcept C121608353 @default.
- W4362584130 hasConcept C126322002 @default.
- W4362584130 hasConcept C143998085 @default.
- W4362584130 hasConcept C177713679 @default.
- W4362584130 hasConcept C19527891 @default.
- W4362584130 hasConcept C2776256026 @default.
- W4362584130 hasConcept C2908861384 @default.
- W4362584130 hasConcept C41008148 @default.
- W4362584130 hasConcept C71924100 @default.
- W4362584130 hasConceptScore W4362584130C119857082 @default.
- W4362584130 hasConceptScore W4362584130C121608353 @default.
- W4362584130 hasConceptScore W4362584130C126322002 @default.
- W4362584130 hasConceptScore W4362584130C143998085 @default.
- W4362584130 hasConceptScore W4362584130C177713679 @default.
- W4362584130 hasConceptScore W4362584130C19527891 @default.
- W4362584130 hasConceptScore W4362584130C2776256026 @default.
- W4362584130 hasConceptScore W4362584130C2908861384 @default.
- W4362584130 hasConceptScore W4362584130C41008148 @default.
- W4362584130 hasConceptScore W4362584130C71924100 @default.
- W4362584130 hasIssue "4" @default.
- W4362584130 hasLocation W43625841301 @default.
- W4362584130 hasOpenAccess W4362584130 @default.
- W4362584130 hasPrimaryLocation W43625841301 @default.
- W4362584130 hasRelatedWork W102980731 @default.
- W4362584130 hasRelatedWork W1967103478 @default.
- W4362584130 hasRelatedWork W2032912323 @default.
- W4362584130 hasRelatedWork W2216151316 @default.
- W4362584130 hasRelatedWork W2372561159 @default.
- W4362584130 hasRelatedWork W2375344515 @default.
- W4362584130 hasRelatedWork W2380382254 @default.
- W4362584130 hasRelatedWork W2390152934 @default.
- W4362584130 hasRelatedWork W2610092277 @default.
- W4362584130 hasRelatedWork W3096852753 @default.
- W4362584130 hasVolume "18" @default.
- W4362584130 isParatext "false" @default.
- W4362584130 isRetracted "false" @default.
- W4362584130 workType "article" @default.